
MRI Internals

Koichi Sasada
ko1@heroku.com

MRI Internals
towards Ruby 3

Koichi Sasada
ko1@heroku.com

Today’s talk

•Koichi is working on improving Ruby internals

• Introduce my ideas toward Ruby 3

Koichi Sasada
& Yuki
Living in Japan

Koichi is a Programmer

•Ruby interpreter (MRI) developer over 10 years
• YARV: Yet Another RubyVM from 2004/Jan
• MRI committer since 2007/Jan

Koichi’s contributions
YARV: Yet Another RubyVM (1.9-)

Ruby interpreter

Ruby (Rails) app

RubyGems/Bundler

So many gems
such as Rails, pry, thin, … and so on.

i gigantum umeris insidentes
Standing on the shoulders of giants

Ruby’s world for most of people

Koichi’s contributions
YARV: Yet Another RubyVM (1.9-)

Ruby Interpreter

Ruby
script

Parse

Compile

Ruby
Bytecode

Object
management(GC)

Threading

Embedded
classes and methods (Array, String, …)

Bundled
Libraries

Evaluator

Gem
Libraries

Replace from Ruby 1.8 to YARV

Koichi’s contributions
Fiber (Ruby 1.9-)
•Abstraction objects of execution contexts

• Fiber is from Windows API
• Cooperative thread, Coroutine (or Semi-Coroutine)

• Fast fiber context switch with non-portable methods
Fiber1

Fiber2

Fiber3

Fiber2

Fiber1

resume

resume yield

yeild

time

Koichi’s contributions
GC Improvements (Ruby 2.1-)
• Generational GC (for Ruby 2.1)

• Introduce RGenGC by inventing “WB-unprotected” objects technique and
reduce marking time dramatically

• Incremental GC with same technique (for Ruby 2.2)

0

5

10

15

Total mark time (ms) Total sweep time (sec)

A
cc

u
m

u
la

te
d

ex

ec
u

ti
o

n
 t

im
e

(s
ec

)

w/o RGenGC RGenGC

About x15 speedup!

* Disabled lazy sweep to measure correctly.

Koichi’s contributions
Pre-compilation (Ruby 2.3-)

Interpret on RubyVM

Ruby
script

Parse

Compile

Ruby
Bytecode (ISeq)

Embedded
classes and methods

Evaluator

Compiled binary

Load

Extended part

Pre-compilation
utility

Koichi is an Employee

Koichi is a member of Heroku Matz team

Mission

Design Ruby language

and improve quality of MRI
Heroku employs three full time Ruby core developers in Japan

named “Matz team”

Heroku Matz team

Matz
Designer/director of Ruby

“Design”

Nobu
Quite active committer

“Make and Fix”

Ko1
Internal Hacker

“Optimize”

Heroku Matz team

Decide MRI Optimize MRIMake and fix MRI

Expected flow

Heroku Matz team

Decide MRI Optimize and
break MRI

Make, break
and fix MRI

Matz team Eco system!

Latest release Ruby 2.3
Today, no time to introduce new features…

Please ask me later.

Upcoming Ruby 2.4
Not big features yet.

We are discussing.

MRI Internals
toward Ruby 3
Goals of Ruby 3 and current my ideas

Ruby3: Ruby3 has 3 goals

• Static type checking

• Just-in-Time (JIT) compilation

•Parallel execution w/ highly abstract
concurrent model

Ruby3: Ruby3 has 3 goals

• For productivity
• Static type checking

• For performance
• Just-in-Time (JIT) compilation
• Parallel execution w/ highly abstract concurrent model

Ruby3x3: Ruby 3 is 3 times faster

•Matz said

“We will release Ruby 3
when it is 3 times faster

than Ruby 2.0”

•Proposed by AppFolio
•Good slogan to challenge

Ruby3: 3 goals
My ideas
Static type checking

Just-in-Time (JIT) compilation

Parallel execution w/ highly abstract concurrent model

Ruby3 Goal
Static type checking

Ruby3 Goal
Static type checking
•Please consider this scenario

• (1) Write your code with Rails
• (2) Run your rails server
• (3) (5 hours later…)
• (4) See RuntimeError with “uncommon” request

Ruby3 Goal
Static type checking
• Type checking: Pointing out “wrong” program before

running
• You can know “possible bugs” before running program

• Language types
• Statically typed language

• Need to note types for each elements (variables, functions)
• “Type inference” helps to reduce typing

• Dynamically typed language (Ruby is this type)
• No need to write types explicitly
• Objects (and so on) know each types

Ruby3 Goal
Static type checking
• Frequent proposals

• Optional typing
• Allow to write types as annotations
• Specify classes

• def foo(n: Integer)
…

n.bar #=> Error because Integer

does not have #bar

end

Type annotation

Ruby3 Goal
Static type checking
•Problem

1. Matz does not like “Type annotation”
• Matz said “I don’t want to write annotations any more”

• Because he is lazy 

2. What is “Type?”
• Class is not enough because Rubyist love “Duck typing”

3. How to care “meta-programming”?
• Ruby can add methods easily while running

Ruby3 Goal
Static type checking
• Solution (?)

•Invent a new magic
• Precognition seems nice

Ruby3 Goal
Static type checking
• Solution

• Soft typing, gradual typing, success typing … from
academic research achievements

•Now, we are studying :p

Ruby3 Goal
Just-in-Time (JIT) compilation

Ruby3 Goal
Just-in-Time (JIT) compilation
•Compiling Ruby code while running (just-in-time)

• Compile to something lower-level such as machine code

•Advantage compare with pre-compile
• We can know program behaviors as hints

• Example
def foo(n)

n.times{…} # n seems “Integer”

with several traials

end

Ruby3 Goal
Just-in-Time (JIT) compilation
•Knowing behaviors (parameters) helps “optimization”

• Example: Method/block inlining
def foo(n)

n.times{…}

#=> if n.kind_of?(Integer)

i = 0; while(i<n); …; i+=1; end

else

n.times{…}

end

end

Type guard

“while” is faster 

Ruby3 Goal
Just-in-Time (JIT) compilation
•How/who to implement it?

• (1) Use IBM Ruby OMR project
• https://github.com/rubyomr-preview/rubyomr-preview

• (2) Use LLVM
• (3) Implement own JIT compilers

• RuJIT (translate Ruby to C with hints)

• Memory consuming problems

Ruby3 Goal
Parallel execution

Ruby3 Goal
Parallel execution
•MRI supports “Concurrent execution”,

but not support “Parallel execution”
•MRI has GVL: Global (Giant) interpreter lock
•GVL prepends to run Ruby threads in parallel

Ruby Thread 1
OS Thread 1

OS Thread 2

GVL
GVL

Ruby Thread 2

Ruby3 Goal
Parallel execution
•GVL: Advantage

• It is enough to interleave blocking I/O operations
• We don’t care about severe thread-safe error
• We can continue to use existing C extensions

•GVL: Disadvantage → Can’t utilize multiple cores
Ruby Thread 1

OS Thread 1

OS Thread 2

GVL
GVL

Ruby Thread 2

Ruby3 Goal
Parallel execution
•One idea: Parallel threads
• JRuby and Rubinius support it!
• You can try them today!

•So far as we write a correct thread-safe program,
we can utilize multiple cores.

Ruby3 Goal
Parallel execution
•One idea: Parallel threads
• JRuby and Rubinius support it!
• You can try them today!

•So far as we write a correct thread-safe program,
we can utilize multiple cores.

correct thread-safe program

Ruby3 Goal
Parallel execution
• “Why Threads Are A Bad Idea (for most purposes)”

• Quoted from John Ousterhout, 1995 (about 20 years ago )

Ruby3 Goal
Parallel execution
• Writing correct thread-safe program is very hard

• Shared everything
• Need suitable synchronization
• Hard to reproduce timing problems

• Many techniques are invented in 20 years
• Synchronous queue, compare and swap primitive, …
• Helper libraries

• java.util.concurrent
• ruby-concurrent

• Such techniques require “remember to use them”

Ruby3 Goal
Parallel execution
• Writing correct thread-safe program is very hard

• Shared everything
• Need suitable synchronization
• Hard to reproduce timing problems

• Many techniques are invented in 20 years
• Synchronous queue, compare and swap primitive, …
• Helper libraries

• java.util.concurrent
• ruby-concurrent

• Such techniques require “remember to use them”

“remember to use them”

Ruby3 Goal
Parallel execution
• This issue is similar to GC (Garbage collection)

• GC solves “free” related problems
• GC frees object automatically, no need to call “free” any more
• We don’t need to worry about forgetting “free” and

“where”, ”when” should we “free” something.
• There are several performance impact compare with

“manually free”, but productivity is more important

•People should not care about synchronizations
• Even if shared-everything model has performance advantage

Ruby3 Goal
Parallel execution
• Two ways to avoid such difficulty

(1) Making smart thread-safe debugger

(2) Introduce higher abstraction for concurrency

Ruby3 Goal
Parallel execution
• (1) Making smart thread-safe debugger

• Example) Pointing out lack of locks
• Well researched by academic area and used in production

•Continue to use threads, shared everything model
• Good

• Well-known model
• No overhead

• Bad
• We need to debug it
• We can’t guarantee 100% coverage

Ruby3 Goal
Parallel execution
• (2) Introduce higher abstraction for concurrency

• Introduce new isolated concurrent execution entities
• Run entities in parallel and communicate with each other

• Do not mutate anything simultaneously

Ruby3 Goal
Parallel execution
• (2) Introduce higher abstraction for concurrency

• Introduce new isolated concurrent execution entities
• Run entities in parallel and communicate with each other
• Like “Processes” by “fork”
• Good

• Shared-nothing → we don’t need to care about thread-safety
(problems of concurrent programming such as dead-lock are remain)

• Bad
• Introduce overhead
• Learning cost for new abstraction

Ruby 3: Ruby 3 has 3 goals

• For productivity
• Static type checking

• For performance
• Just-in-Time (JIT) compilation
• Parallel execution w/ highly abstract concurrent model

Message

•We are discussing about Ruby3 just now

•Any suggestions and implementations are welcome!

It may be your turn!

Time to make our future of Ruby

Thank you for your attention

Koichi Sasada
<ko1@heroku.com>

