
Ruby.inspect
Koichi Sasada

<ko1@heroku.com>

"Ruby.inspect" by Koichi Sasada, RDRC2014

Summary.inspect

• Introduction of new Ruby
• Stable 2.1

• Next version of 2.2

• How to inspect your application behavior
• With tools & services

• Make a tools by inspection primitives

• Inspection from outside

"Ruby.inspect" by Koichi Sasada, RDRC2014

“Today’s Message”.inspect

Become
a Low-level

engineer
(somtimes)

"Ruby.inspect" by Koichi Sasada, RDRC2014

Ko1.inspect
#=> <Ko1: @name=“Koichi Sasada”>

• Koichi Sasada a.k.a. ko1

• From Japan

•笹田 (family name)耕一 (given name) in Kanji
character
• “Ichi” (Kanji character “一”) means “1” or first

• This naming rule represents I’m the first son of my
parents

• Ko”ichi” → ko1

"Ruby.inspect" by Koichi Sasada, RDRC2014

Ko1.inspect
#=> <Ko1: @job=“Programmer”>

•CRuby/MRI committer
• Virtual machine (YARV) from Ruby 1.9

• YARV development since 2004/1/1

• Recently, improving GC performance

• Matz team at Heroku, Inc.
• Full-time CRuby developer

• Working in Japan

• Director of Ruby Association

"Ruby.inspect" by Koichi Sasada, RDRC2014

RubyAssociation.inspect
#=>

The Ruby Association was founded to further
development of the programming language Ruby.

The goals of the Ruby Association are to improve
relationship between Ruby-related projects,

communities and businesses, and to address issues
connected with using Ruby in an enterprise

environment.

Quoted from http://www.ruby.or.jp/en/

"Ruby.inspect" by Koichi Sasada, RDRC2014

http://www.ruby.or.jp/en/

• Foundation to encourage Ruby dev. and
communities

• Activities
• Ruby programmer certification program

• http://www.ruby.or.jp/en/certification/examination/ in English

• Grant project. We have selected 3 proposals in 2013
• Ruby Prize

• To recognize the efforts of “New members” to the Ruby
community

• http://www.ruby.or.jp/en/news/20140627.html

• Maintenance of Ruby (Cruby) interpreter
• Now, it is for Ruby 2.0.0

• Events, especially RubyWorld Conference
• http://www.rubyworld-conf.org/

• Donation for Ruby developments and communities
"Ruby.inspect" by Koichi Sasada, RDRC2014

http://www.ruby.or.jp/en/certification/examination/
http://www.ruby.or.jp/en/news/20140627.html
http://www.rubyworld-conf.org/

• Heroku, Inc. http://www.heroku.com

You should know about Heroku!!

"Ruby.inspect" by Koichi Sasada, RDRC2014

http://www.heroku.com/

• Heroku, Inc. http://www.heroku.com

• Heroku supports OSSs / Ruby development
• Many talents for Ruby, and also other languages

• Heroku employs 3 Ruby interpreter core
developers
• Matz

• Nobu

• Ko1 (me)

• We name our group “Matz team”

"Ruby.inspect" by Koichi Sasada, RDRC2014

http://www.heroku.com/

“Matz team”.inspect

Matz @ Shimane
Title collector

Nobu @ Tochigi
Patch monster

ko1 @ Tokyo
EDD developer"Ruby.inspect" by Koichi Sasada, RDRC2014

Matz.inspect
#=> Title collector

• He has so many (job) title
• Chairman - Ruby Association
• Fellow - NaCl
• Chief architect, Ruby - Heroku
• Research institute fellow – Rakuten
• Chairman – NPO mruby Forum
• Senior researcher – Kadokawa Ascii Research Lab
• Visiting professor – Shimane University
• Honorable citizen (living) – Matsue city
• Honorable member – Nihon Ruby no Kai
• …

• This margin is too narrow to contain

"Ruby.inspect" by Koichi Sasada, RDRC2014

Nobu.inspect
#=> Patch monster

• Great patch creator

"Ruby.inspect" by Koichi Sasada, RDRC2014

Nobu is
Great Patch Monster

"Ruby.inspect" by Koichi Sasada, RDRC2014

nobu
29%

akr
12%

svn
9%

naruse
8%

usa
4%

ko1
4%

drbrain
3%

kosaki
3%

kazu
2%

zzak
2%

tenderlove
2%

matz
2%

marcandre
2%

mame
2%

tadf
2%

knu
1%

shugo
1%

nagachika
1%

yugui
1%

kou
1%

mrkn
1%

emboss
1%

shyouhei
1%

nari
0%

glass
0%

ktsj
0%

nahi
0%

ayumin
0%

tarui
0%

sorah
0%

ryan
0%

charliesome
0%

shirosaki
0%

xibbar
0%

nagai
0%

eregon
0%

ngoto
0%

wanabe
0%
azav
0%

keiju
0%
suke
0%

kouji
0%

duerst
0%

takano32
0%

luislavena
0%
jeg2
0%
hsbt
0%

arton
0%
seki
0%

kanemoto
0%

tmm1
0%

eban
0%

muraken
0%

headius
0%

evan
0%

a_matsuda
0%

iwamatsu
0%

technorama
0%

davidflanagan
0%

gotoken
0%

okkez
0%

COMMIT RATIO IN LAST 5 YEARS

0

5

10

15

20

25

2
0

1
0

/1
1

/8

2
0

1
1

/1
/8

2
0

1
1

/3
/8

2
0

1
1

/5
/8

2
0

1
1

/7
/8

2
0

1
1

/9
/8

2
0

1
1

/1
1

/8

2
0

1
2

/1
/8

2
0

1
2

/3
/8

2
0

1
2

/5
/8

2
0

1
2

/7
/8

2
0

1
2

/9
/8

2
0

1
2

/1
1

/8

2
0

1
3

/1
/8

2
0

1
3

/3
/8

2
0

1
3

/5
/8

2
0

1
3

/7
/8

2
0

1
3

/9
/8

2
0

1
3

/1
1

/8

Commit number of ko1 (last 3 years)

Ko1.inspect
#=> EDD developer

RubyConf
2012

RubyKaigi
2013

Ruby 2.0

Euruko
2013

RubyConf
2013

"Ruby.inspect" by Koichi Sasada, RDRC2014EDD: Event Driven Development

“Mission of Matz team”.inspect

• Improve quality of next version of CRuby
• Matz decides a spec finally

• Nobu fixed huge number of bugs

• Ko1 improves the performance

"Ruby.inspect" by Koichi Sasada, RDRC2014

“Ruby 2.1”.inspect
#=> Current stable

"Ruby.inspect" by Koichi Sasada, RDRC2014

http://www.flickr.com/photos/loginesta/5266114104

“Ruby 2.1”.inspect
#=> a bit old Ruby

• Ruby 2.1.0 was released at 2013/12/25
• New features

• Performance improvements

• Ruby 2.1.1 was released at 2014/02/24
• Includes many bug fixes found after 2.1.0 release

• Introduce a new GC tuning parameter to change
generational GC behavior (introduce it later)

• Ruby 2.1.2 was released at 2014/05/09
• Solves critical bugs (OpenSSL and so on)

"Ruby.inspect" by Koichi Sasada, RDRC2014

Ruby 2.1 the biggest change
Version policy
• Change the versioning policy

• Drop “patch level” in the version

• Teeny represents patch level
• Release new teeny versions about every 3 month

• Teeny upgrades keep compatibility

• Minor upgrades can break backward compatibility
• We make an effort to keep compatibility

(recently. Remember Ruby 1.9 )

"Ruby.inspect" by Koichi Sasada, RDRC2014

Ruby 2.1 New syntax

•New syntaxes
• Required keyword

parameter
• Rational number literal
• Complex number literal
• `def’ returns symbol of

method name

"Ruby.inspect" by Koichi Sasada, RDRC2014

http://www.flickr.com/photos/rooreynolds/4133549889

Ruby 2.1 Syntax
Required keyword parameter
• Keyword argument (from Ruby 2.0.0)

• def foo(a: 1, b: 2); end

• `a’ and `b’ are optional parameters

• OK: foo(); foo(a: 1); foo(a: 1, b: 2); foo(b: 2)

• Required keyword argument from 2.1
• def foo(a: 1, b:)

• `a’ is optional, but `b’ is required parameter

• OK: foo(a: 1, b: 2); foo(b: 2)

• NG: foo(); foo(a: 1)

"Ruby.inspect" by Koichi Sasada, RDRC2014

Ruby 2.1 Syntax
Rational number literals
• To represent ½, in Ruby “Rational(1, 2)”

→ Too long!!

• Introduce “r” suffix

½ → 1/2r

• “[digits]r” represents “Rational([digits], 1)”

• ½ → 1/2r
• 1/2r #=> 1/Rational(2, 1)

• 1/Rational(2, 1) #=> Rational(1/2)

"Ruby.inspect" by Koichi Sasada, RDRC2014

Ruby 2.1 Syntax
Complex number literals
• We already have “Integer#i” method to make

imaginary number like “1+2.i”

• We already introduced “r” suffix for Rational

→ No reason to prohibit “i” suffix!!

• [digits]i represents “Complex(0, [digits])”

• 1+2i #=> 1+Complex(0, 2)

• 1+Complex(0, 2) #=> Complex(1, 2)

• You can mix “r” and “i” suffix

"Ruby.inspect" by Koichi Sasada, RDRC2014

Ruby 2.1 Syntax
Return value of `def’ syntax

• Return value of method definition
• Method definition syntax returns symbol of

defined method name

• `def foo; …; end’ #=> :foo

• Method modifier methods
• Example:

• private def foo; …; end

• public static void def main(args); …; end

"Ruby.inspect" by Koichi Sasada, RDRC2014

Ruby 2.1 Runtime new features

• String#scrub

• Process.clock_gettime

• Binding#local_variable_get/set

• Bignum now uses GMP (if available)

• Extending ObjectSpace

"Ruby.inspect" by Koichi Sasada, RDRC2014

Performance improvements

• Optimize “string literal”.freeze

• Sophisticated inline method cache

• Introducing Generational GC: RGenGC

"Ruby.inspect" by Koichi Sasada, RDRC2014

RGenGC: Generational GC for Ruby
• RGenGC: Restricted Generational GC

• Generational GC (minor/major GC uses M&S)
• Dramatically speedup for GC-bottleneck applications
• New generational GC algorithm allows mixing “Write-

barrier protected objects” and “WB unprotected objects”
→ No (mostly) compatibility issue with C-exts

• Inserting WBs gradually
• We can concentrate WB insertion efforts for major objects

and major methods
• Now, most of objects (such as Array, Hash, String, etc.) are

WB protected
• Array, Hash, Object, String objects are very popular in Ruby
• Array objects using RARRAY_PTR() change to WB unprotected

objects (called as Shady objects), so existing codes still works.

"Ruby.inspect" by Koichi Sasada, RDRC2014

0

2

4

6

8

10

12

14

Total mark time (ms) Total sweep time (sec)

A
cc

u
m

u
la

te
d

 e
xe

cu
ti

o
n

 t
im

e
 (

se
c)

w/o RGenGC RGenGC

RGenGC
Performance evaluation (RDoc)

About x15 speedup!

* Disabled lazy sweep to measure correctly.

"Ruby.inspect" by Koichi Sasada, RDRC2014

RGenGC
Performance evaluation (RDoc)

* 12% improvements compare with w/ and w/o RGenGC
* Disabled lazy sweep to measure correctly.

103.7627479 102.3799865

16.04393815
4.946003494

0

20

40

60

80

100

120

140

w/o RGenGC RGenGC

To
ta

l e
xe

cu
ti

o
n

 t
im

e
(s

ec
)

other than GC GC

"Ruby.inspect" by Koichi Sasada, RDRC2014

“Ruby 2.2”.inspect
#=> Next version

"Ruby.inspect" by Koichi Sasada, RDRC2014

http://www.flickr.com/photos/adafruit/8483990604

Schedule of Ruby 2.2

• Not published officially

• Schedule draft is available by Naruse-san
• https://bugs.ruby-lang.org/projects/ruby-

trunk/wiki/ReleaseEngineering22

"Ruby.inspect" by Koichi Sasada, RDRC2014

https://bugs.ruby-lang.org/projects/ruby-trunk/wiki/ReleaseEngineering22

Ruby 2.2 schedule

"Ruby.inspect" by Koichi Sasada, RDRC2014

2014/12/25
Ruby 2.2.0

RubyKaigi
9/18, 19, 20

RubyConf
11/17, 18, 19Rubyconf.tw

4/25, 26

Rubyconf.PH
3/28, 29

We are
here!2013/12

Ruby 2.1.0

RDRC
6/26, 27

Events are important for
EDD (Event Driven Development) Developers

Ruby 2.2 (rough) schedule

"Ruby.inspect" by Koichi Sasada, RDRC2014

2014/12/25
Ruby 2.2.0

2013/12
Ruby 2.1.0

Sep/2014
Preview 1

Big feature freeze

Nov/2014
Preview2

Feature freeze

Dec/2014
Release

candidate

Bug fix only

Critical Bug fix only

We are
here!

Aug/2014
Dev. Meeting
Feature proposal

26th,Jul/2014
Dev. Meeting
Feature proposal

2.2 big features (planned)

• New syntax: not available now

• New method: no notable methods available
now

• Libraries:
• Minitest and test/unit will be removed (provided by

bundled gem)

"Ruby.inspect" by Koichi Sasada, RDRC2014

2.2 internal changes

• Internal
• C APIs

• Hide internal structures for Hash, Struct and so on

• Remove obsolete APIs

• GC
• Symbol GC (merged recently)

• 2age promotion strategy for RGenGC

• Incremental GC to reduce major GC pause time

• VM
• More sophisticated method cache

"Ruby.inspect" by Koichi Sasada, RDRC2014

Symbol GC

• Symbols remain forever → Security issue
• “n.times{|i| i.to_s.to_sym}”

creates “n” symbols and they are never collected

• Symbol GC: Collect dynamically created symbols

"Ruby.inspect" by Koichi Sasada, RDRC2014

Break

"Ruby.inspect" by Koichi Sasada, RDRC2014

http://www.flickr.com/photos/donkeyhotey/8422065722

Ruby.inspect

https://www.flickr.com/photos/theloushe/4640871734/
"Ruby.inspect" by Koichi Sasada, RDRC2014

Inspecting Ruby

• You may want to know “what happen?” on your
application

• Ruby has many “inspecting” features to see
applications behavior
• Some features are supported only by MRI/CRuby

"Ruby.inspect" by Koichi Sasada, RDRC2014

Why “inspect” is needed?

• Code reading

• Debugging

• Performance tuning

• Understanding Ruby’s implementation

• …

"Ruby.inspect" by Koichi Sasada, RDRC2014

How to inspect your app?

• Use “Tools and services” for Ruby

• Make tools with “Standard inspect features”

• Inspect Ruby process itself from outside

"Ruby.inspect" by Koichi Sasada, RDRC2014

Inspection features
on computer layers

Hardware

Operating System

Ruby interpreter

Libraries/Tools

Your app
Tools &
Services

Primitives

"Ruby.inspect" by Koichi Sasada, RDRC2014

Tools & Services

https://www.flickr.com/photos/bunnyrel/9015937323

"Ruby.inspect" by Koichi Sasada, RDRC2014

Tools & Services

Hardware

Operating System

Ruby interpreter

Libraries/Tools

Your app
Tools &
Services

"Ruby.inspect" by Koichi Sasada, RDRC2014

Tools & Services

• Benchmarking
• benchmark
• benchmark/ips

• Profiling
• [Time] ruby-prof (deterministic profiler)
• [Time] perftools.rb, stackprof, rblineprof (sampling profilers)
• [Memory] GCTracer, AllocationTracer, …
• [Total] NewRelic

• Debugging
• ruby-debug
• byebug (2.0~)
• tracer (standard library)

"Ruby.inspect" by Koichi Sasada, RDRC2014

New Relic

• “Dive into Ruby VM Stats with New Relic”
http://blog.newrelic.com/2014/04/23/ruby-vm-
stats/

• “Ruby VM measurements”
https://docs.newrelic.com/docs/ruby/ruby-vm-
stats

"Ruby.inspect" by Koichi Sasada, RDRC2014

IMPORTANT

You can use New Relic very easily
on Heroku as an Add-on

http://blog.newrelic.com/2014/04/23/ruby-vm-stats/
https://docs.newrelic.com/docs/ruby/ruby-vm-stats

Tools & Services

You can find manuals for tools!

Enjoy!

• “Debugging Ruby Performance” by Aman Gupta
will help you to survey

https://speakerdeck.com/tmm1/debugging-ruby-
performance

"Ruby.inspect" by Koichi Sasada, RDRC2014

https://speakerdeck.com/tmm1/debugging-ruby-performance

Ruby’s Inspection primitives
How to make inspection tools?

https://www.flickr.com/photos/fiddleoak/6691220069/

"Ruby.inspect" by Koichi Sasada, RDRC2014

Inspection features
on computer layers

Hardware

Operating System

Ruby interpreter

Libraries/Tools

Your app

Primitives

"Ruby.inspect" by Koichi Sasada, RDRC2014

Ruby’s Inspection primitives
• Show object

• Reflections

• Statistics

• Tracing

"Ruby.inspect" by Koichi Sasada, RDRC2014

Show objects
Kernel#p and pp library

•Debug print
• Kernel#p(obj): print result of “obj.inspect”

• pp: print pretty printed result

• Both print onto STDOUT

• You can modify Object#inspect for better
representation

• Everyone love to use 
• Traditional “printf” debug

"Ruby.inspect" by Koichi Sasada, RDRC2014

Show objects
Kernel#p and pp library

• Tips
• Use p() method with keyword argument

foo=[1, 2]; bar={a: 1, b: ['bar']}

p foo: foo, bar: bar

#=> {:foo=>[1, 2],

:bar=>{:a=>1, :b=>["bar"]}}

• PP.pp(obj, STDERR) prints onto STDERR, not
STDOUT

"Ruby.inspect" by Koichi Sasada, RDRC2014

Show objects
ObjectSpace::dump(obj)
• Dump the contents of a ruby object as JSON

• Not for serializing, but for seeking internal
“implementation specific” information

• ObjectSpace::dump_all() dumps all objects and
relations
• It will help us to find out memory leak (unexpected

relation to prevent GC collection)

• Introduced from Ruby 2.1

"Ruby.inspect" by Koichi Sasada, RDRC2014

Reflections

https://www.flickr.com/photos/cbpphotos/11934804573
"Ruby.inspect" by Koichi Sasada, RDRC2014

Reflections
• Stack trace

• caller, caller_locations
• Thread#backtrace, Thread#backtrace_locations

• Access variables
• Object#instance_variable_get(name)
• Binding#local_variable_get(name)
• Kernel#global_variable_get(name)
• Module#class_variable_get(name)
• Module#const_get

• Definitions
• #source_location, #arity, #parameters for Method and Proc

objects

• Last weapon
• Kernel#eval, Object#instance_eval, …

"Ruby.inspect" by Koichi Sasada, RDRC2014

Getting stack trace
caller, caller_locations

• caller() returns Backtrace strings array.
• like ["t.rb:1:in `<main>'"]

• caller_locations() retuns OO style backtrace
information
• caller_locations(0).each{|loc|

p "#{loc.path}:#{loc.lineno}“}

• No need to parse “backtrace” string!

"Ruby.inspect" by Koichi Sasada, RDRC2014

Getting more rich trace
debug_inspector gem

• Binding information for each frame
• General version of caller_binding

• https://github.com/banister/debug_inspector

"Ruby.inspect" by Koichi Sasada, RDRC2014

https://github.com/banister/debug_inspector

Accessing variables

• Object#instance_variable_get(name)

• Binding#local_variable_get(name)

• Kernel#global_variable_get(name)

• Module#class_variable_get(name)

• Module#const_get

"Ruby.inspect" by Koichi Sasada, RDRC2014

Getting definitions

• Method#source_location, Proc#source_location

• Method#arity, Proc#arity

• Method#parameters, Proc#parameters

"Ruby.inspect" by Koichi Sasada, RDRC2014

Evil eval

• eval series

• Kernel#eval, Binding#eval

• Object#instance_eval

• Module#module_eval

• Can do everything

• Accessing any variable (getting and setting)

• Evaluate any expression

• Strong, but dangerous

"Ruby.inspect" by Koichi Sasada, RDRC2014

Statistics

https://www.flickr.com/photos/cimmyt/5428317596
"Ruby.inspect" by Koichi Sasada, RDRC2014

Statistics features

• GC.stat for GC (memory management)

• ObjectSpace::count_objects

"Ruby.inspect" by Koichi Sasada, RDRC2014

Statistics information
GC.stat returns “current information of GC”
• Counts

• :count=>2, # GC count
• :minor_gc_count=>2, # minor GC count
• :major_gc_count=>0, # major GC count

• Current slot information
• :heap_live_slot=>6836, #=> # of live objects
• :heap_free_slot=>519, #=> # of freed objects
• :heap_final_slot=>0, #=> # of waiting finalizer objects
• total_slots = heap_live_slot + heap_free_slot +

heap_final_slot

• Statistics
• :total_allocated_object=>7674, # total allocated objects
• :total_freed_object=>838,# total freed objects
• Current living objects = total_allocated_object - total_freed_object

"Ruby.inspect" by Koichi Sasada, RDRC2014

GC.stat example: normal program

100_000.times{|i| ""; # Generate an empty string
h = GC.stat
puts "#{i}¥t#{h[:total_allocated_object]}¥t#{h[:total_freed_object]}"}

GC.stat example: Leakey behavior

ary = []
100_000.times{|i| ary << "" # generate an empty string and store (leak)
h = GC.stat
puts "#{i}¥t#{h[:total_allocated_object]}¥t#{h[:total_freed_object]}"}

Live obj#

Statistics information
ObjectSpace::count_objects

• ObjectSpace::count_objects returns counts for
each type

Example:
p ObjectSpace::count_objects

#=>

{:TOTAL=>30235, :FREE=>1226, :T_OBJECT=>60, :T_CLASS=>513, :T_MODULE=>24
, :T_FLOAT=>7, :T_STRING=>9527, :T_REGEXP=>68, :T_ARRAY=>1718, :T_HASH=>8
9, :T_STRUCT=>1, :T_BIGNUM=>5, :T_FILE=>21, :T_DATA=>1013, :T_MATCH=>26, :
T_COMPLEX=>1, :T_NODE=>15904, :T_ICLASS=>32}

• Sister methods
• ObjectSpace::count_objects_size in ‘objspace’ lib

"Ruby.inspect" by Koichi Sasada, RDRC2014

Tracing

• TracePoint

• DTrace

• Object allocation tracing

• Trace object relations

"Ruby.inspect" by Koichi Sasada, RDRC2014

TracePoint

• Track Ruby’s execution
• Insert tracing points by block
• Introduced from Ruby 2.0
• Lightweight OO-style version of “set_trace_func” method

old style

set_trace_func(lambda{|ev,file,line,id,klass,binding|

puts “#{ev} #{file}:#{line}”

}

new style with TracePoint

trace = TracePoint.trace{|tp|

puts “#{tp.event}, #{tp.path}:#{tp.line}”

}

"Ruby.inspect" by Koichi Sasada, RDRC2014

TracePoint
Advantages

• Advantage of TracePoint compare with
set_trace_func
• OO style

• Easy enable and disable

• Lightweight
• Creating binding object each time is too costly

• Event filtering

"Ruby.inspect" by Koichi Sasada, RDRC2014

TracePoint
Traceable events

• Same as set_trace_func
• line

• call/return, c_call/c_return

• class/end

• raise

• New events (only for TracePoint)
• thread_begin/thread_end

• b_call/b_end (block start, block end)

"Ruby.inspect" by Koichi Sasada, RDRC2014

TracePoint
Filtering

• TracePoint.new(events) only hook “events”
• “set_trace_func” track all events

• Example:

TracePoint.new(:call, :return){…}

• Aliases
• a_call -> call, c_call, b_call

• a_return -> return, c_return, b_return

"Ruby.inspect" by Koichi Sasada, RDRC2014

TracePoint
Event information

• Same as set_trace_func
• event

• path, lineno

• defined_class, method_id

• binding

• New event info
• return_value (only for retun, c_return, b_return)

• raised_exception (only for raise)

"Ruby.inspect" by Koichi Sasada, RDRC2014

TracePoint
Internal events

• Added events
• RUBY_INTERNAL_EVENT_NEWOBJ

• When object is created

• RUBY_INTERNAL_EVENT_FREEOBJ
• When object is freed

• RUBY_INTERNAL_EVENT_GC_START
• When GC is started

• RUBY_INTERNAL_EVENT_GC_END_MARK
• When marking of GC is finished

• RUBY_INTERNAL_EVENT_GC_END_SWEEP
• When sweeping of GC is finished

"Ruby.inspect" by Koichi Sasada, RDRC2014

TracePoint
Internal events

• Timeline

"Ruby.inspect" by Koichi Sasada, RDRC2014

Ruby

Mark
Sweep

Stop the
(Ruby)
World

Sweep Sweep Sweep Sweep

GC
Start

GC End
sweep

GC End
mark

DTrace

• Solaris, MacOSX FreeBSD and Linux has DTrace
tracing features

• Ruby interpreter support some events

• See https://bugs.ruby-
lang.org/projects/ruby/wiki/DTraceProbes

"Ruby.inspect" by Koichi Sasada, RDRC2014

https://bugs.ruby-lang.org/projects/ruby/wiki/DTraceProbes

Object allocation tracing

• ObjectSpace::trace_object_allocations
• Trace object allocation and record allocation-site

• Record filename, line number, creator method’s id and class

• Implemented by TracePoint with internal events NEWOBJ/FREEOBJ

• Usage:
ObjectSpace.trace_object_allocations{ # record only in the block

o = Object.new

file = ObjectSpace.allocation_sourcefile(o) #=> __FILE__

line = ObjectSpace.allocation_sourceline(o) #=> __LINE__ -2

}

Memory management tuning in Ruby,
RubyConfPH 2014 by K.Sasada

<ko1@heroku.com>
75

Trace objects relations
• ObjectSpace.reachable_objects_from(obj) returns

directly reachable objects
• Examples:

(1) When obj is [“a”, “b”, “c”], returns [Array, “a”, “b”, “c”]

(2) When obj is [“a”, “a”], returns [Array, “a”, “a”]

(3) When obj is [a = “a”, a], returns [Array, “a”]

76

array
obj

Array

“a”

array
obj

Array

“a”

“a”

(2)
(3)array

obj Array

“c”“b”

(1)

“a”

Trace objects relations

• You can analyze memory leak. ... Maybe.

• Combination with ObjectSpace.memsize_of()
(introduced at 1.9) is also helpful to calculate how
many memories consumed by obj.

77

array
obj

Array

“a”
“a”

12 byte

1 byte

1 byte

Total 14 bytes
(this is fake example)

DEMO

Trace objects from root

• ObjectSpace.reachable_objects_from_root -> hash
• Return all reachable objects from root.

• You can get all objects graph in the heap.

• ObjectSpace::dump_all() is implemented with this
method.

"Ruby.inspect" by Koichi Sasada, RDRC2014

Make tools!!

• Example: combination of GC.stat and TracePoint
• ObjectSpace::trace_object_allocation

• gc_tracer: GC behavior

• allocation_tracer: Allocation tracing

• You can make your own tools if you need!!

"Ruby.inspect" by Koichi Sasada, RDRC2014

Inspect from outside

https://www.flickr.com/photos/justin_case/2842104135"Ruby.inspect" by Koichi Sasada, RDRC2014

Inspect ruby
process from

outside

Ruby process

Inspection features
on computer layers

Hardware

Operating System

Ruby interpreter

Libraries/Tools

Your app

From other process

From OS

"Ruby.inspect" by Koichi Sasada, RDRC2014

Inspect from outside

• System level tracing
• strace (system call tracer)

• Dtrace, systemtap, … (with Ruby’s dtrace support)

• System level profilers
• Valgrind (massif for memory usage)

• prof, proftools, …

• System level debugger
• gdb

"Ruby.inspect" by Koichi Sasada, RDRC2014

Advanced inspection

https://www.flickr.com/photos/usnavy/5958545513
"Ruby.inspect" by Koichi Sasada, RDRC2014

Inspection features
on computer layers

Hardware

Operating System

Ruby interpreter

Libraries/Tools

Your app

They are
only

software!!

"Ruby.inspect" by Koichi Sasada, RDRC2014

You can modify software

•Modify inspection tools
• Most of tools are placed on github

•Modify Ruby interpreter
• Make an C extension libraries with C-APIs

• Some tools are written as C-extensions

• Modify Ruby interpreter written in C

•Modify operating systems and system
software layers

"Ruby.inspect" by Koichi Sasada, RDRC2014

Hacking Ruby

• “Ruby Under a Microscope”
• By Pat Shaughnessy

• http://patshaughnessy.net/ruby-under-
a-microscope

• “Ruby Hacking Guide”
• By Minero Aoki, written in Japanese

• English translation: http://ruby-
hacking-guide.github.io/

"Ruby.inspect" by Koichi Sasada, RDRC2014

http://patshaughnessy.net/ruby-under-a-microscope

Advanced computer layers

Hardware

Operating System

Ruby interpreter

Libraries/Tools

Your app

"Ruby.inspect" by Koichi Sasada, RDRC2014

Advanced computer layers

Virtual Hardware

Guest Operating System

Ruby interpreter

Libraries/Tools

Your app

Real Hardware

Virtual Machine Monitor (VMM) system

They are also
only

software!!

"Ruby.inspect" by Koichi Sasada, RDRC2014

Important idea:
Understanding Lower-layers

• Understanding computer layers and lower-layers helps
your understanding of your application
• Which information we can inspect

• What happen on the computer

• Ruby hides computers details, but understanding details
will help you
• This is why “Computer science” study is important

• Or try to ask lower-layer professionals 

• Balance is matter between higher-layers and lower-
layers

"Ruby.inspect" by Koichi Sasada, RDRC2014

Today’s Message

Become
a Low-level

engineer
(somtimes)

"Ruby.inspect" by Koichi Sasada, RDRC2014

Talk.inspect
Summary of this talk

• Introduction of Ruby 2.1, 2.2

• How to inspect your application behavior
• With tools & services

• Make a tools by inspection primitives

• Inspection from outside

• Knowing “low-level” helps you

• Happy hacking

"Ruby.inspect" by Koichi Sasada, RDRC2014

“Ruby.inspect”
Thank you for your attention

Koichi Sasada
<ko1@heroku.com>

"Ruby.inspect" by Koichi Sasada, RDRC2014

