Object management on

Ruby 2.1

Koichi Sasada
Heroku, Inc.

kol@heroku.com

. heroku

eeeeeeeeeeeeeeeeeeeeee
aaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Summary of this talk

* Ruby 2.1.0 will be released soon!
« 2013/12/25

 Some new features and internal performance
iImprovements

* Rewrite object management to improve
performance
e “gc.c” & 3414 insertions, 1121 deletions
 Allocation/Deletion trace mechanism
Introduce generational mechanism
Tuning GC parameters
Optimize object allocation path
Refactoring (terminology, method path, etc)

Whoam | ?

e Koichi Sasada a.k.a. ko1l

* From Japan

Viis s

« [(family) Ft— (given) in Kanji character
* “Ichi” (Kanji character “—”) means “1” or first

* This naming rule represents I’'m the first son of my
parents

e Ko”ichi” = kol

Whoam | ?

e Koichi Sasada a.k.a. ko1l

* Matz team at Heroku, Inc.
* Full-time CRuby developer

* Working in Japan | h herOkU
* CRuby/MRI committer

* Virtual machine (YARV) from Ruby 1.9
* YARV development since 2004/1/1

* Director of Ruby Association

7 Ruby Association

Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013 4

{7 Ruby Association

* Foundation to encourage Ruby developments and
communities
* Chairman is Matz
* Located at Matsue-city, Japan

* Activities
* Maintenance of Ruby (Cruby) interpreter

* Now, it is for Ruby 1.9.3
* Ruby 2.0.0 in the future?
Events, especially RubyWorld Conference
Ruby Prize
* 3 nominates
Grant. We have selected 3 proposals in 2013
* Win32Utils Support, Conductor, Smalruby - smalruby-editor
Making an appeal for contribution

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

R | Advertisement

1! heroku

* Heroku, Inc. <http://www.heroku.com>
* You should know about Heroku!

* Heroku supports Ruby development
* Many talents for Ruby (and also other languages)

e Especially Heroku employs three Ruby interpreter core
developers
* Matz
* Nobu
* Kol (me)
 We name our group “Matz team”

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

Mission of Matz team

* Improve quality of next version of CRuby
* Matz decides a spec finally
* Nobu fixed (huge number of) bugs
* Kol improves the performance

Current target is “Ruby 2.1”

Ruby 2.1
Next version

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

Ruby 2.1 release plan
announcement

“I, Naruse, take over the release manager of Ruby
2.1.0 from mame. Ruby 2.1.0 is planed to release in
2013-12-25. I'm planning to call for feature proposals
soon like 2.0.0 [ruby-core:45474], so if you have a
suggestion you should begin preparing the proposal.”

- [ruby-core:54726] Announce take over the release

manager of Ruby 2.1.0
by NARUSE, Yui

2013/12/25!

http://www.flickr.com/photos/htakashi/5285103341/ by Takashi Hososhima

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

10

http://www.flickr.com/photos/htakashi/5285103341/

Ruby 2.1 schedule

We are 2013/12/25
2013/02
Ruby 2./0.0 Ruby 2.1.0
O' ® “ '

RubyKaigi2013 Euruko2013 RubyConf2013

5/30, 31, 6/1 6/28, 29 11/8-10

Events are important for
EDD (Event Driven Development) Developers

Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013 H

Ruby 2.1 schedule (more)

2013/12/25
Ruby 2.1.0

O ¢ 2013/12
2013/07 2013/10 K o

Previewl

Dev-meeting @
w/Matz

2013/06 2013/11

Call for Feature

2013/09 Preview?2

Feature freeze

Proposal (CFP)

https://bugs.ruby-lang.org/projects/ruby-trunk/wiki/ReleaseEngineering210

https://bugs.ruby-lang.org/projects/ruby-trunk/wiki/ReleaseEngineering210

Ruby 2.1
New features

Object management on Ruby 2.1

1
by Koichi Sasada at RubyConf2013 :

#-%-rdoc -

= NEWS for Ruby 2.1.0

This document is a st of user visible feature changes made between
releases except for bug fxes.

o thatechertry ept st o ressn beind o

i stcomormaton, o0t Changelog file

hanges since the 2.0.0 release

Language changes

@ Those
“required keyword arguments" need giving explicity at the calltime.

* Added suffixes for integer and float iterals: ', I, and
20 3140 e et s Ratonl42 1 nd 314 atonae,
respectively. But exponential form with ' suffx ke "6.022e+23r
not accepted because it s misleading
* 421" and "3.14i" are evaluated as Complex(0, 42) and Complex(0, 3.14),
espectivel

211" and are evaluated as Complex(0, 42r) and Complex(0, 3.14r),
respectively.
* def-expr now returns the symbol ofits name instead of il

* Added ' suffixfor string lterals that returns a rozen String object,

Core classes updates (outstanding ones only)

* Array
* New methods
* Arrayiito_h converts an array of key-value pairs nto a Hash

* Binding
* New methods
* Bindingtlocal_variable_get(symbol)
* Bindingiocal_variable_set(symbol, obj)
* BindingHlocal_variable_defined?(symbol)

* Enumerable
* New methods

list of key-value h

"6
* added environment variable:
* RUBY_HEAP_SLOTS_GROWTH_FACTOR: growth rate of the heap.

* Fisnumbit_length
* Bignumibit_length

* Bignum performance improvement
* Use GMP if available.
GMPis used only for several operations:
multiplication, division, radix conversion, GCD

10
* extended methods:
7 Ofseck supports SEEK_DATA and SEEK_HOLE 3swhence
CUR, N, SET, :DATA,

* \wread nonblock acceps optional “xcepton: fals” o retun symbols
*10#write_nonblock accepts optional ‘exception: false' to return symbols

hods:
*Kernelfsingleton_method

* Module

* New methods

* Moduleftusing, which activates refinements of the specified module only.
inthe current class or module definition.

* Modulefsingleton_class? returns true if the receiver s singleton class
orfalseif it is an ordinary class or module.

* extended methods:

*Modulefrefine is no longer experimental

* Modulefinclude and Modulefiprepend are now public methods.

- Mutex
Ntextouned? s nofonger experimenta,

* Numeric
* extended methods:
* NumericHstep allows the limit argument to be omitted, in which
caseaninfinite sequence of numbers i generated. Keyword
arguments ‘to" and by’ areintroduced for ease of use.

* process
* New methods:

*gemmative methods t$0/50=

* Process arg()returns the original value of $0.

* rocess setproditl) sets e proces i wihout afecting 0
* process clock g

* Process.clock_getres

* RbCor
“Newcon
o S2EOF i e 1 provide the e of C ypes.

*string
* New methods:
St and gt v and s vl e seqence
* extended methods:
il el s spcied forSngiencode,relc
v by sequence even ifthe destinaion encoding equsls to
the source encoding

symbol
* All symbols are now frozen.

* pack/unpack (Array/String)
Q1 and q! directives for long long type if platform has the type.

* toplevel
* extended methods:
. perimental. The method activates ref
i the ancestors of the argument module to support refinement
inheritance by Modulefinclude.

Core classes compatibiltyissues (excluding feature bug fixes)

.
* incompatble changes
‘open ignore internal encoding if external encoding is ASCII-88IT.

* Kernelteval, Kernelinstance_eval, and Module#module_eval.
* Coples the scope information of the original environment, which means
that private, protected, public, and module_function without arguments
do ot affect the environment outside the eval string.
For example, ‘lass Foo; eval “private’; def foo; end; end' doesn't make.
Footfoo private.

* Kernelftuntrusted?, untrust, and trust
* These methods are deprecated and their behavior is same as tainted?,
taint, and untaint, respectively. If SVERBOSE s true, they show warnings.

* Moduletancestors
= The ancestors of a singleton class now include singleton classes,
nparticular itsel,

* Moduletdefine_method and Objectidefine_singleton_method
* Now they return the symbols of the defined methods, not the methads/procs
themselves.

* Numerictquo
* Raises Typekrror instead of ArgumentError Ifthe receiver doesn't have

* Returning from lambda proc now always exitsfrom the Proc, not from the
proc exits

from the method, same as the former behavior.

Stdllb updates (outstanding ones only)

* cal

il
* Al lass methods modulzed.

* Digest
* extended methods:
* Digest::Class.file takes optional arguments for s constructor

* Matrix
* Added Vectorkcross_product

* Net:sMTP
* Added Net:SWITPiiset to implement the RSET command
* Pathname

* New methods

* Pathnametwrite

* Pathnametbinwrite
* OpenssLiaN

* extended methods:

* OpenssL:BN.new allows Fixnum/Bignum argument

* Support muliple fields with same field name (ike Set-Cookie].

* Updated to 10.1.0. Major changesinclude removal of the class namespace,
Rake::DSLto hold the rake DSL methods and removal of support forlegacy.
rakefeatures.

Fora complete lst of changessince rake 0.96 see:

hitps//rake rubyforge.org/doc/release_notes/rake-10_1_0_rdoc.html
hitps//rake rubyforge.org/doc/release_notes/rake-10_0_3_rdoc.html

* Updated to 4.1.0.preview. 1. Major enhancements include a modified default
template and accessibilty enhancements.

Foralist of minor enhancements and bug fixes see:

* Resolv
* New methods:
* Resolv::DNS fetch_resource
* One-shot multicast DNS support
* Support LOC resources.

* REXML:Parsers:SAX2Parser
* Fixes wrong number of arguments of entitydecl event, Document of the event
says"an array of the entity declaration” but implemenation passes tw
it breaks back

compatibility.

* REXML:Parsers:StreamParser
* Supports "entity” event.

* REXML: Text
REAMIL Tothee supprts method cain e ext << XAX' << YY"
* REXML: Texth<< supports not "raw’ mode,

* Rinda: RingServer, Rinda: Ringfinger

Rinda:RingFinger for details

* RubyGems
* Updated t0.2.2.0. 1 "

New methods:
* Setintersect?
*Sethdisjoint?

*Socket

* New methods
ok gentacrs

* stringscanner

xtended methor
*stringscanner(] supports named captures.

* Syslog:Logger

* Added facilty.

* Tempile

* New methods:
*Tempile.create

*Timeout

Object management on Ruby 2.1 by Koichi
Sasada at RubyConf2013

*Nolonger an exception to terminate the given block can be rescued
inside the block, by default, unless the exception class s given
explicitly

*Tsortstrongly_connected_components
*TSort.each_strongly_connected_component
*TSort.each_strongly_connected_component_from

ek

\olreedpar\-al and firead.

* XMLRPC: Client
* New methods:

* XMLRPC::Clientéhttp. It returns Net::HTTP for the client. Normaly,
HITP client
options. You can change major HTP client options by XMLRPC: Client
methods. You should use XMLRPC::Client methods for changing major
HTTP client options instead of XMLRPC::Clientéhttp.

stdlib compatibilty issues (excluding feature bug fixes)

* objspace
* new method:

* Objectspace trace_object_allocations
* Objectspace.trace_object_allocations_start
 Quectspacerace_abjct allcaons stop
. Callocations_clear

~Objectspace llocation sourefle

* Objectspace.allocation_sourceline

* Objectspace.allocation_class_path

* Objectspaceallocation_method._id

* Objectspaceallocation_generation

* Objectspace.reachable_objects_from_root

set
*incompatible changes:
* Setito_set now returns self Instead of generating a copy.

“URl
*incompatible changes:
* URLdecode_www_form follows current WHATWG URL Standar
et to specify the 8
Itnow allows loose percent encoded strings, but denies ;-separator.
* URLencode_www_form follows current WHATWG URL Standar.
Itgetsencoring argument o convertbefore percen encode.
Itconverted to UTF-8: default

Built-in global variables compatibilty isues

* soaFe
* $SAFE=d Is obsolete. If $SAFE s set to 4 or larger, an Argumentrror

CAPI updates

See NEWS file

Now, much smaller than Ruby 2.0

14

Ruby 2.1 new features

 New Numeric syntax (1/2r => Rational(1, 2), etc.)
* “def” returns a symbol of method name

* Refine features introduced from Ruby 2.0
» Keyword arguments
* Refinements
* Module#prepend

* New methods

e Refine m17n introduced from Ruby 1.9
e String#scrub, String#scrub!
* Verify and fix invalid byte sequence.

 Enumerable#to h

* Frozen objects
* All symbols
* Frozen string is discussed now

Ruby 2.1 Internal improvements

* Profiling supports

e Additional internal hooks for object allocation and
deallocation

* Profiling API

* More sophisticated garbage collection
* RGenGC: Introduce generational GC into CRuby
* GC Parameter tuning
e Other tuning

* More sophisticated method caching
* Bignum/Integer improvements

Today'’s topic
Object management

New Profiling support

* Internal hooks for object management

* Profiling API to get backtrace information without
huge overhead

Internal hooks for object management
What's nice?

* You can collect more detailed analysis

* Examples
e Collect object allocation site information
* Collect usage of allocated objects
* Measure GC performance from outside

Internal hooks for object management

e 4 added events
* RUBY_INTERNAL_EVENT NEWOBIJ

* When object is created

* RUBY INTERNAL EVENT_ FREEOBJ
 When object is freed

* RUBY_INTERNAL_EVENT GC_START
* When GC is started

* RUBY_INTERNAL EVENT_GC _END
* When GC s finished

GC GC
Start End
Mark
Sweep Sweep Sweep Sweep Sweep
Ru by 9 I I 0 IS
<M.
Stop the
(Ruby) Object management on Ruby 2.1

1
World by Koichi Sasada at RubyConf2013 ?

Internal hooks for object management
*Caution®

* You can *NOT* trace these events using TracePoint
(introduced from 2.0)

* You need to write C-ext to use them, because
events are invoked during GC, etc

* Use new “postponed job” API

Internal hooks for object management
Sample feature using new hooks

* ObjectSpace. trace_object_allocations

* Trace object allocation and record allocation-site
e Record filename, line number, creator method’s id and class
* Usage:
ObjectSpace.trace_object_allocations{ # record only in the block

o = Object.new
file = ObjectSpace.allocation_sourcefile(o) #=> __ FILE

line = ObjectSpace.allocation_sourceline(o) #=> LINE__ -2

}

e Demonstration

Ruby 2.1
To be more sophisticated
object management

Better Object management

» Refactoring object management code
* Object management code is in “gc.c” in CRuby
* | have rewritten (am rewriting) gc.c many parts
e “gc.c” - 3414 insertions, 1121 deletions

* GC parameter tuning

* New GC algorithm called “RGenGC”

* Generational garbage collection
* Keep compatibility and performance

GC parameter tuning
Introduce only one case

Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013 24

GC parameter tuning

e When GC occur?

(1) There are no slot to allocate object
(2) Exceed threshold of memory allocation

* (1) is easy to understand
* Introduce (2) more details

GC parameter tuning
malloc_increase and malloc_limit

* Memory allocation - GC

e Every time allocate “n” size memory (call malloc(n))
increase “malloc_increase” with “n”

* If malloc_increase > malloc_limit, then cause GC

* Default parameter of “malloc_limit” is “8§MB”!!

* Too smallll
e String read from 8MB file
* An array which has 1M entry on 64bit CPU

* | ask Matz “why such small value?”
e His reply is “l used 10MB machine at 20 years old”

GC parameter tuning
Dynamic tuning of “malloc_limit”

e Default: SMB - 16MVIB

* Adaptive tuning
* If “malloc_increase” exceeds “malloc_limit”, then
increase “malloc_limit”

* Increase “malloc_limit” by a factor of environment variable
“GC_MALLOC_LIMIT_GROWTH_FACTOR” (default is 1.4)

 Maximum value of “malloc_limit” can be set with environment
variable “GC_MALLOC_LIMIT_MAX” (default is 32MB)

* If “malloc_increase” doesn’t exceed limit, then decrease
“malloc_limit”

GC parameter tuning
Dynamic tuning of “malloc_limit”

35

Grow limit aggressively

v on Ruby 2.1

25

Small limit cause

20

e increase(2.0) e |imit(2.0) e=—increase(2.1) == limit(2.1)

Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013 28

Introduce
Generational GC
into CRuby

Object management on Ruby 2.1

2
by Koichi Sasada at RubyConf2013 ?

RGenGC: Summary

e RGenGC: Restricted Generational GC

* New generational GC algorithm allows mixing “Write-
barrier protected objects” and “WB unprotected objects”

* No (mostly) compatibility issue with C-exts
* Inserting WBs gradually

* We can concentrate WB insertion efforts for major objects
and major methods

* Now, Array, String, Hash, Object, Numeric objects are WB
protected

* Array, Hash, Object, String objects are very popular in Ruby

* Array objects using RARRAY_PTR() change to WB unprotected
objects (called as Shady objects), so existing codes still works.

RGenGC: Previous talk

* Algorithm is introduced at
* RubyKaigi2013
* Euruko2013

* See also these slides/movie for details

RGenGC: Agenda

* Background
e Generational GC
* Ruby’s GC strategy

* Proposal: RGenGC

e Separating into normal objects and shady objects
* Shady objects at marking
e Shade operation

* Implementation

RGenGC: Background
Current CRuby’s GC

* Mark & Sweep
* Conservative
* Lazy sweep
* Bitmap marking
* Non-recursive marking

e C-friendly strategy

* Don’t need magical macros in C source codes
* Many many C-extensions under this strategy

RGenGC
Restriction of CRuby’s GC

1. Because of “C-friendly” strategy:
* We can’t know object relation changing timing

* We can’t use “Moving GC algorithm” (such as
copying/compacting)

2. Because of “Object data structure”:
* We can’t measure exact memory consumption

* Based on assumption: “malloc” library may be
smarter than our hack

* We rely on “malloc” library for memory allocations
e GConly manage “object” allocation/deallocation

RGenGC: Background —

Mark & Sweep

Root objects

1. Mark reachable

e objects from root
~ objects

traverse e 2. Sweep unmarked
ff objects (collection

m— marked and de-allocation)

traverse

traverse

traverse
Collect unreachable

objects

marked marked :

Object management on Ruby 2.1 35
by Koichi Sasada at RubyConf2013

RGenGC: Background
Generational GC (GenGC(C)

* Weak generational hypothesis:
“Most objects die young”

— Concentrate reclamation effort
only on the young objects

RGenGC: Background —

Generational hypothesis

Object lifetime in RDoc
(How many GCs surviving?)

95% of objects dead by the first GC

20

Percentage of dead object#

10

0

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102

Lifetime (Survibing GC count)

Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013 37

RGenGC: Background —

Generational hypothesis

Object lifetime in RDoc
(How many GCs survive?)

100
90

20 Some type of objects (like Class)

70

- has long lifetime

50
40
30
20
10
0 m I

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102

Lifetime (Survibing GC count)

Percentage of dead object#

——T OBJECT =——T CLASS =T MODULE=——T STRING ——T REGEXP
——T ARRAY =——T HASH =T STRUCT =——T _BIGNUM =——T_FILE
——T DATA ——T MATCH ——T NODE ~——T_ICLASS

Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013 38

RGenGC: Background
Generational GC (GenGC(C)

e Separate young generation and old generation
* Create objects as young generation
* Promote to old generation after surviving n-th GC
* In CRuby, n == 1 (after 1 GC, objects become old)

e Usually, GC on young space (minor GC)
* GC on both spaces if no memory (major/full GC)

RGenGC: Background
Generational GC (GenGC(C)

* Minor GC and Major GC can use different GC
algorithm
* Popular combination is:
Minor GC: Copy GC, Major GC: M&S
* On the CRuby, we choose:
Minor GC: M&S, Major GC: M&S

e Because of CRuby’s restriction (we can’t use moving
algorithm)

Minor M&S GC

15t MinorGC .
| Root objects

traverse

old/
free

collect

RGenGC: Background: GenGC

* Mark reachable objects from
root objects.

 Mark and promote to old
generation

e Stop traversing after old
objects

- Reduce mark overhead

e Sweep not (marked or old)
objects

e Can’t collect Some
unreachable objects

{ Don’t collect old object J

even if it is unreachable.

41

Minor M&S GC

2" MinorGC .
| Root objects

traverse

ignore

old/
free

collect

RGenGC: Background: GenGC

* Mark reachable objects from
root objects.

 Mark and promote to old
generation

e Stop traversing after old
objects

- Reduce mark overhead

e Sweep not (marked or old)
objects

e Can’t collect Some
unreachable objects

{ Don’t collect old object J

even if it is unreachable.

42

RGenGC: Background: GenGC —

Major M&S GC]

Root objects

e Normal M&S

* Mark reachable objects from

root objects
@ Mark and promote to old gen

* Sweep unmarked objects

traverse traverse
collect

 Sweep all unreachable
(unused) objects

traverse

old/
free

collect

Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013 43

Root objects

traverse

traverse

ignore

RGenGC: Background: GenGC
Problem: mark miss

* Old objects refer young objects
— lgnore traversal of old object
= Minor GC causes

marking leak!!

* Because minor GCignores
referenced objects by old
objects

Can’t mark new object!
- Sweeping living object!
(Critical BUG)

Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013 a4

RGenGC: Background: GenGC —
ntroduce Remember set (Rset)

Remember

Root objects set (RSet)

traverse

1. Detect creation of an
[old->new] type
reference

2. Add an [old object] into
Remember Remember set (RSet) if
an old object refer new
objects

traverse

Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013 45

RGenGC: Background: GenGC —

‘Minor M&S GC] w/ RSet

Remember

Root objects set (RSet)

1. Mark reachable
objects from root
objects

collect * Remembered objects are

also root objects

traverse
2. Sweep not (marked or
old) objects

traverse

traverse

traverse

Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013 46

RGenGC: Background: GenGC —

Write barrier

* To detect [old—>new] type references, we need to
insert “Write-barrier” into interpreter for all
“Write” operation

. S

“Write barrier”
[Old->New] type reference
Detected!

Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013 4

RGenGC
Back to Ruby’s specific issue

RGenGC: CRuby’s case
Write barriers in Ruby

* Write barrier (WB) example in Ruby world
* (Ruby) old_ary[0] = newO # [old_ary = newO]
* (Ruby) old_obj.foo = new1l # [old_obj - newl]

old_ary old_obj

Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013 49

RGenGC: CRuby's case

Difficulty of inserting write barriers

* To introduce generational garbage collector, WBs are
necessary to detect [old—>new] type reference

e “Write-barrier miss” causes terrible failure
1. WB miss
2. Remember-set registration miss
3. (minor GC) marking-miss
4. Collect live object - Terrible GC BUG!!

RGenGC: Problem
Inserting WBs into C-extensions (C-exts)

 All of C-extensions need perfect Write-barriers
e C-exts manipulate objects with Ruby’s C API
* C-level WBs are needed

* Problem: How to insert WBs into C-exts?

* There are many WB required programs in C-exts
* Example (C): RARRAY_PTR(old0)[0] = new1
* Ruby C-API doesn’t require WB before

* CRuby interpreter itself also uses C-APlIs

e How to deal with?

* We can rewrite all of source code of CRuby interpreter to add WB,
with huge debugging effort!!

* We can’t rewrite all of C-exts which are written by 3™ party

RGenGC: Problem
Inserting WBs into C-extensions (C-exts)

Two options

Performance | Compatibility 2.0and
earlier
. Good conservative
1 Give up GenGC Poor o ekl choice
5 GenGC with re- Good Most of C-exts
writing all of C exts doesn’t work

Trade-off of Speed and Compatibility

Object management on Ruby 2.1

2
by Koichi Sasada at RubyConf2013 >

RGenGC: Challenge

* Trade-off of Speed and Compatibility

* Can we achieve both speed-up w/ GenGC and keeping
compatibility?

* Several possible approaches

e Separate heaps into the WB world and non-WB world
* Need to re-write whole of Ruby interpreter
* Need huge development effort
* WB auto-insertion
* Modify C-compiler
* Need huge development effort

RGenGC: Our approach

* Create new generational GC algorithm permits WB
protected objects AND WB un-protected object in

the same heap

RGenGC: Restricted Generational
Garbage Collection

RGenGC: Invent 3™ option
|| Performance | Compatibility _

Good

1 Give up GenGC Poor o ekl
GenGC with re- Good Most of C-exts
writing all of C codes doesn’t work

Ruby 2.1

3 Use new RGenGC choice
works!!

Most of C-exts

Breaking the trade off. You can praise us!!

Object management on Ruby 2.1

5
by Koichi Sasada at RubyConf2013 >

RGenGC:
Key idea

* Introduce Shady object

* | use the word “Shady” as
qguestionable, doubtful, ...

 Something feeling dark
« HIEH, in Japanese

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

56

RGenGC:
Key Idea

* Separate objects into two types Shady: doubtful,
 Normal Object: WB Protected questionable, ...
* Shady Object: WB Unprotected
Normal Shady
\ (o)) / (TNE ‘)

* We are not sure that a shady object points new
objects or not

* Decide this type at creation time

* A class care about WB - Normal object
* A class don’t care about WB - Shady object

RGenGC:
Key Idea

* Normal objects can be
changed to Shady objects VM
e “Shade operation”

e C-exts don’t care about WB,
objects will be shady objects

Create

* Bxample Shade
* ptr=RARRAY_PTR(ary) Normal
* In this case, we can’t insert WB fc obj
ptr operation, so VM shade “ary” 4

Now, Shady object can’t
change into normal object

Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013 o8

RGenGC
Key Idea: Rule

* Treat “Shady objects” correctly
e At Marking
1. Don’t promote shady objects to old objects
2. Remember shady objects pointed from old objects
e At Shade operation for old normal objects
1. Demote objects
2. Remember shaded shady objects

RGenGC
‘Minor M&S GC w/Shady object]

15t MinorGC
‘ Root objects

Remember ¢ Mark reachable objects
set (RSet) from root objects

* Mark shady objects, and
remember *don’t promote* to old gen

objects
collect * If shady objects pointed
$ from old objects, then
w remember shady objects
by RSet.

traversg traverses mark and
remember

— Mark shady objects

every minor GC!!
traverse

yect management on Ruby 2.1

By Koichi Sasada at RubyConf2013 °0

RGenGC
‘Minor M&S GC w/Shady object]

2nd MinorGC

Remember ¢ Mark reachable objects
set (RSet) from root objects

* Mark shady objects, and
don’t promote to old gen

Root objects

objects
gnore collect * If shady objects pointed
$ from old objects, then
w remember shady objects by
RSet.

ignore traverse

— Mark shady objects

every minor GC!!
traverse

traverse

bct management on Ruby 2.1

BV Koichi Sasada at RubyConf2013 ol

RGenGC
Shade operation]

Remember | ¢ Anytime Object can give up to
set (RSet) keep write barriers

— [Shade operation]

* Change old normal objects to
shade objects
 Example: RARRAY_PTR(ary)
(1) Demote object (old - new)
(2) Register it to Remember Set

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

62

RGenGC
Timing chart
2.0.0 GC (M&S w/lazy sweep)

Rub Mark Sweep Sweep Sweep Sweep Sweep
Y* IEEEEEEEST IS IS S é
<€ >
Stop the (Ruby)
World
w/RGenGC (Minor GC)
Markswe P Sweep Sweep Sweep Sweep

Ruby a a

e Shorter mark time (good)

(Ruby)
World e Same sweep time (not good)

* (little) Longer execution time b/c WB (bad)

Object management on Ruby 2.1

63
by Koichi Sasada at RubyConf2013

RGenGC
Number of objects

2.0.0 GC (M&S)

of Living objects # of Freed objects

&>

w/RGenGC (Minor GC)

of Living objects # of

Freed objects
& >
€ D> > >

of old (c) # of new # of freed

objects objects (#new) but remembered () # of old ObjeCFS by WB
(#old) objects (b) # of shady objects pointed by old

(c) # of old but shady objects

RGenGC
Number of objects

w/RGenGC (Minor GC) E(a)i (Eb)i

E # of Living objects E # of Freed object

of old (c) # of new # of freed
object object (#new) but remembered
(#old) objects

(a) # of old objects by WB
(b) # of shady objects pointed by old
(c) # of old but shady objects

Marking space Number of unused, | Sweeping
uncollected objs space

Mark&Swep GC # of Living objects Full heap
Traditional GenGC #new + (a) (a) #new
RGenGC #new + (a) + (b) + (c) (a) + (b) Full heap

Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013 =

RGenGC
Discussion: Pros. and Cons.

* Pros.

* Allow WB unprotected objects (shady objects)
* 100% compatible w/ existing extensions which don’t care about WB
* A part of CRuby interpreter which doesn’t care about WB
* Inserting WBs step by step, and increase performance
gradually
 We don’t need to insert all WBs into interpreter core at a time
* We can concentrate into popular (effective) classes/methods.
* We can ignore minor classes/methods.

e Simple algorithm, easy to develop (already done!)

RGenGC
Discussion: Pros. and Cons.

* Cons.
* Increasing “unused, but not collected objects until full/major
GC
 Remembered normal objects (caused by traditional GenGC

algorithm)
« Remembered shady objects (caused by RGenGC algorithm)
 WB insertion bugs (GC development issue)

* RGenGC permit shady objects, but sunny objects need
correct/perfect WBs. But inserting correct/perfect WBs is difficult.

* This issue is out of scope. We have another idea against this
problem (out of scopeg).

e Can’t reduce Sweeping time

* But many (and easy) well-known techniques to reduce sweeping
time (out of scope).

* Increase complexity
e Additional tuning parameters

RGenGC

Implementation: WB support status

T_OBJECT
T_CLASS
T_ICLASS

T_MODULE
T_FLOAT
T_STRING

T_REGEXP
T_ARRAY
T_HASH

T_STRUCT

T_BIGNUM

T_FILE
T_DATA

T_MATCH

T_RATIONAL

T_COMPLEX
T_NODE

Supported
Supported
Supported
Supported
Supported
Supported
Supported
Supported
Supported
Supported
Supported
Unsupported
Supported
Unsupported
Supported
Supported
Unsupported

Possible to change into shady
Possible to change into shady

Possible to change into shady

Possible to change into shady / more efforts are needed

Possible to change into shady

Not yet
Only InstructionSequence objects are supported

Most of MatchData objects are short-lived

Most of Node objects are short-lived

RGenGC
mplementation

* Introduce two flags into RBasic

 FL_KEEP_WB: WB protected or not protected

* 0 = unprotected - Shady object

* 1 - protected - Sunny object

e Usage: NEWOBJ_OF(ary, struct RArray, klass, T_ARRAY | FL_KEEP_WB);
* FL_ PROMOTED: Promoted or not

* 0 - Young gen

* 1->0ldgen

* Don’t need to touch by user program

* Remember set is represented by bitmaps
e Same as marking bitmap

* heap_slot::rememberset_bits
* Traverse all object area with this bitmap at first

RGenGC
Implementation: WB operation API

(7

d

* OBJ_ WRITE(a, &a->x, b)

* Declare ‘@’ aggregates ‘b’]
 Write: *&a->x=b \

* Write barrier \

 OBJ_WRITE(a, b) returns “a” \
oldv

 OBJ_WRITTEN(a, oldyv, b)

* Declare ‘a’ aggregates ‘b’ and old value is ‘oldv’
* Non-write operation
* Write barrier

Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013 70

RGenGC

Implementation: WB operation API

* T_ARRAY

« RARRAY PTR(ary) causes shade operation

e Can’t get RGenGC performance improvement
e But works well © (Do not need to modify codes)

* Instead of RARRAY_ PTR(ary), use alternatives
« RARRAY_AREF(ary, n) > RARRAY_PTR(ary)[n]
 RARRAY_ASET(ary, n, obj) > RARRAY_PTR(ary)[n] = obj w/
Write-barrier
 RARRAY_PTR_USE(ary, ptrname, {...block...})

* Onlyin block, pointers can be accessed by "ptrname’ variable
(VALUE*).

 Programmers need to insert collect WBs (miss causes BUG).

RGenGC
ncompatibility

* Make RBasic::klass “const”
* Need WBs for a reference from an object to a klass.
* Only few cases (zero-clear and restore it)

 Provide alternative APIs

* Now, RBASIC_SET_CLASS(obj, klass) and
RBASIC_CLEAR_CLASS(obj) is added. But they should be
internal APIs (removed soon).

* rb_obj_hide() and rb_obj_reveal() is provided.

RGenGC
Performance evaluation

* |deal micro-benchmark for RGenGC
* Create many old objects at first
* Many new objects (many minor GC, no major GC)

* RDoc

e Same “make doc” task from trunk

RGenGC
Performance evaluation (micro)

* Shorter mark time (good)

500000000 — ° Same Sweep time (nOt gOOd)_
E 400000000
> ——mark (RGENGC)
_g 300000000 —=—sweep (RGENGC)
.§ R mark
b [/ \N,’ . ___b\'/"—'\r;‘\.,l-;;—w\; — sweep
Good mark \\

time © Same sweep

1 2 3 4 5 6 7 8 9 10 11 12 gclcl;uljtm 17 18 19 20 21 22 23 tlme @

Object management on Ruby 2.1
s 74
by Koichi Sasada at RubyConf2013

RGenGC
Performance evaluation (RDoc)

Compare with M&S and RGenGC
250

Major/full

GC peaks

ms)

ms

—sweep (ms)

Faster minor

—rgengc/mark (ms)

rgengc/sweep (ms)

GC count

* Disabled lazy sweep to measure correctly.
Object management on Ruby 2.1 75

by Koichi Sasada at RubyConf2013

RGenGC
Performance evaluation (RDoc)

Accumulated execution time (sec)

S N

[EEY
o N b

o N B~ OO O

About x15 speedup!

Total mark time (ms) Total sweep time (sec)
B w/o RGenGC ™M RGenGC

* Disabled lazy sweep to measure correctly.
Object management on Ruby 2.1 76

by Koichi Sasada at RubyConf2013

RGenGC
Performance evaluation (RDoc)

140

[HY
N
o

100
80
60
40
20

Total execution time (sec)

w/0o RGenGC RGenGC
MW other than GC m GC

* 12% improvements compare with w/ and w/o RGenGC
* Disabled lazy sweep to measure correctly.

77

RGenGC: Summary

e RGenGC: Restricted Generational GC

* New GC algorithm allow mixing “Write-barrier protected
objects” and “WB unprotected objects”

e (mostly) No compatibility issue with C-exts

* Inserting WBs gradually

* We can concentrate WB insertion efforts for major objects
and major methods

RGenGC
Remaining task

* Reduce old objects
* Short lived objects promotion old-gen accidentally is harmful

* Minor GC / Major GC timing tuning
* Too many major GC - slow down
* Too few major GC - memory consumption issue

* Inserting WBs w/ application profiling
* Profiling system
* Benchmark programs

* Debugging/Detecting system for WBs bugs
* Improve sweeping performance

Remaining task

* To reduce old objects
— 3 Generations GC (3GenGC)
* Minor GC / Major GC timing tuning

— Count oldgen objects count
— Estimate oldgen space

Three generational GC (3GenGC)
Problem

* RGenGC introduces two generation “Young” and
IlOIdI)

* Some “short-lived” young object will be promoted
as old-gen accidentally

e Ex: loop{a = Object.new; b = Object.new}
* If such “short-lived” objects consumes huge

memory, we need to free such objects
* Ex: loop{Array.new(1_000 _000)} # 1M entries

T

nree generational GC (3GenGC)

ldea

* Add new generation “Infant” generation

e Before: Young - Old
» After 3gen GC: Infant - Young - Old

* Most of objects died in infant, and also young gen

* Good: Avoid short-lived old-gen objects
* Good: Reduce full-GC timing
* Bad: Some overhead

* We implemented this feature and evaluating it
now

Estimated oldgen space
Problem

* We can not measure how oldgen objects consume
memories collectly

* A few oldgen objects can grab huge memory
* Major GC takes long time

* Trade-off between time and memory usage

Estimate oldspace
|[dea

e Estimate how much memory old-gen objects
consumes

* Invoke full GC when estimation exceed the
threshold
* Good: More correct major GC timing
* Bad: Some overhead to measure memory size
e Bad: More tuning parameters

* We implemented this feature and evaluating it
now

Cuture work
-or smarter object management

* Need more tuning
 Some program slower than Ruby 2.0.0
* We need practical benchmarks (other than RDoc)

* Parallel marking/sweeping

e Parallel sweeping is already implemented
<https://github.com/ko1/ruby/tree/parallel _sweep>,
however, it does not improve performance...

* Concurrent marking to reduce full marking stop
time

Summary of this talk

* Ruby 2.1.0 will be released soon!
« 2013/12/25

 Some new features and internal performance
iImprovements

* Rewrite object management to improve
performance
e “gc.c” & 3414 insertions, 1121 deletions
 Allocation/Deletion trace mechanism
Introduce generational mechanism
Tuning GC parameters
Optimize object allocation path
Refactoring (terminology, method path, etc)

Thank you

Koichi Sasada

Heroku, Inc.

<kol@heroku.com>
E heroku

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

87

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

88

Questions and answers

Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013 89

Questions and Answers
RGenGC and CoW friendly

* No problem because only touch flags for oldgen
and shady

Questions and Answers
GC + Threads

e Parallel GC

* Run GC process in parallel (simultaneously)
* Parallel marking
 Parallel sweeping (in today’s talk)

* Concurrent GC / Incremental GC

* Run ruby threads (mutator threads) and GC threads
concurrently

* Major GC consumes huge time (same as current GC) -
Need concurrent GC to reduce pause time

 New WB APl is also designed for concurrent GC

