
Object management on
Ruby 2.1

Koichi Sasada

Heroku, Inc.
ko1@heroku.com

1
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

Summary of this talk

• Ruby 2.1.0 will be released soon!
• 2013/12/25
• Some new features and internal performance

improvements

• Rewrite object management to improve
performance
• “gc.c” → 3414 insertions, 1121 deletions
• Allocation/Deletion trace mechanism
• Introduce generational mechanism
• Tuning GC parameters
• Optimize object allocation path
• Refactoring (terminology, method path, etc)

2
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

Who am I ?

• Koichi Sasada a.k.a. ko1

• From Japan

• 笹田 (family) 耕一 (given) in Kanji character
• “Ichi” (Kanji character “一”) means “1” or first

• This naming rule represents I’m the first son of my
parents

• Ko”ichi” → ko1

3
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

Who am I ?

• Koichi Sasada a.k.a. ko1

• Matz team at Heroku, Inc.
• Full-time CRuby developer

• Working in Japan

• CRuby/MRI committer
• Virtual machine (YARV) from Ruby 1.9

• YARV development since 2004/1/1

• Director of Ruby Association

4
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

• Foundation to encourage Ruby developments and
communities
• Chairman is Matz
• Located at Matsue-city, Japan

• Activities
• Maintenance of Ruby (Cruby) interpreter

• Now, it is for Ruby 1.9.3
• Ruby 2.0.0 in the future?

• Events, especially RubyWorld Conference
• Ruby Prize

• 3 nominates
• Grant. We have selected 3 proposals in 2013

• Win32Utils Support, Conductor, Smalruby - smalruby-editor
• Making an appeal for contribution

Advertisement

5
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

• Heroku, Inc. <http://www.heroku.com>
• You should know about Heroku!

• Heroku supports Ruby development
• Many talents for Ruby (and also other languages)

• Especially Heroku employs three Ruby interpreter core
developers
• Matz

• Nobu

• Ko1 (me)

• We name our group “Matz team”

Advertisement

6
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

Mission of Matz team

• Improve quality of next version of CRuby
• Matz decides a spec finally

• Nobu fixed (huge number of) bugs

• Ko1 improves the performance

Current target is “Ruby 2.1”

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

7

Ruby 2.1

Next version

8
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

Ruby 2.1 release plan
announcement

“I, Naruse, take over the release manager of Ruby

2.1.0 from mame. Ruby 2.1.0 is planed to release in

2013-12-25. I‘m planning to call for feature proposals

soon like 2.0.0 [ruby-core:45474], so if you have a

suggestion you should begin preparing the proposal.”

- [ruby-core:54726] Announce take over the release

manager of Ruby 2.1.0

by NARUSE, Yui

9
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

2013/12/25!

10

http://www.flickr.com/photos/htakashi/5285103341/ by Takashi Hososhima
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

http://www.flickr.com/photos/htakashi/5285103341/

Ruby 2.1 schedule

11

2013/02
Ruby 2.0.0

2013/12/25
Ruby 2.1.0

RubyKaigi2013
5/30, 31, 6/1

RubyConf2013
11/8-10

Euruko2013
6/28, 29

Events are important for
EDD (Event Driven Development) Developers

We are
here!

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

Ruby 2.1 schedule (more)

12

2013/12/25
Ruby 2.1.0

We are
here!

2013/06
Call for Feature
Proposal (CFP)

2013/07
Dev-meeting

w/Matz

2013/09
Feature freeze

https://bugs.ruby-lang.org/projects/ruby-trunk/wiki/ReleaseEngineering210

2013/10
Preview1

2013/11
Preview2

2013/12
RC

https://bugs.ruby-lang.org/projects/ruby-trunk/wiki/ReleaseEngineering210

13

Ruby 2.1

New features

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

14

-*- rdoc -*-

= NEWS for Ruby 2.1.0

This document is a list of user visible feature changes made between
releases except for bug fixes.

Note that each entry is kept so brief that no reason behind or
reference information is supplied with. For a full list of changes
with all sufficient information, see the ChangeLog file.

== Changes since the 2.0.0 release

=== Language changes

* Now the default values of keyword arguments can be omitted. Those
"required keyword arguments" need giving explicitly at the call time.

* Added suffixes for integer and float literals: 'r', 'i', and 'ri'.
* "42r" and "3.14r" are evaluated as Rational(42, 1) and 3.14.rationalize,
respectively. But exponential form with 'r' suffix like "6.022e+23r" is
not accepted because it is misleading.

* "42i" and "3.14i" are evaluated as Complex(0, 42) and Complex(0, 3.14),
respectively.

* "42ri" and "3.14ri" are evaluated as Complex(0, 42r) and Complex(0, 3.14r),
respectively.

* def-expr now returns the symbol of its name instead of nil.

* Added 'f' suffix for string literals that returns a frozen String object.

=== Core classes updates (outstanding ones only)

* Array
* New methods
* Array#to_h converts an array of key-value pairs into a Hash.

* Binding
* New methods
* Binding#local_variable_get(symbol)
* Binding#local_variable_set(symbol, obj)
* Binding#local_variable_defined?(symbol)

* Enumerable
* New methods
* Enumerable#to_h converts a list of key-value pairs into a Hash.

* GC
* added environment variable:
* RUBY_HEAP_SLOTS_GROWTH_FACTOR: growth rate of the heap.

* Integer
* New methods
* Fixnum#bit_length
* Bignum#bit_length

* Bignum performance improvement
* Use GMP if available.
GMP is used only for several operations:
multiplication, division, radix conversion, GCD

* IO
* extended methods:
* IO#seek supports SEEK_DATA and SEEK_HOLE as whence.
* IO#seek accepts symbols (:CUR, :END, :SET, :DATA, :HOLE) for 2nd argument.
* IO#read_nonblock accepts optional `exception: false` to return symbols
* IO#write_nonblock accepts optional `exception: false` to return symbols

* Kernel
* New methods:
* Kernel#singleton_method

* Module
* New methods:
* Module#using, which activates refinements of the specified module only
in the current class or module definition.

* Module#singleton_class? returns true if the receiver is a singleton class
or false if it is an ordinary class or module.

* extended methods:
* Module#refine is no longer experimental.
* Module#include and Module#prepend are now public methods.

* Mutex
* misc
* Mutex#owned? is no longer experimental.

* Numeric
* extended methods:
* Numeric#step allows the limit argument to be omitted, in which
case an infinite sequence of numbers is generated. Keyword
arguments ̀ to` and `by` are introduced for ease of use.

* Process
* New methods:
* alternative methods to $0/$0=:
* Process.argv0() returns the original value of $0.
* Process.setproctitle() sets the process title without affecting $0.

* Process.clock_gettime
* Process.clock_getres

* RbConfig
* New constants:
* RbConfig::SIZEOF is added to provide the size of C types.

* String
* New methods:
* String#scrub and String#scrub! verify and fix invalid byte sequence.

* extended methods:
* If invalid: :replace is specified for String#encode, replace
invalid byte sequence even if the destination encoding equals to
the source encoding.

* Symbol
* All symbols are now frozen.

* pack/unpack (Array/String)
* Q! and q! directives for long long type if platform has the type.

* toplevel
* extended methods:
* main.using is no longer experimental. The method activates refinements
in the ancestors of the argument module to support refinement
inheritance by Module#include.

=== Core classes compatibility issues (excluding feature bug fixes)

* IO
* incompatible changes:
* open ignore internal encoding if external encoding is ASCII-8BIT.

* Kernel#eval, Kernel#instance_eval, and Module#module_eval.
* Copies the scope information of the original environment, which means
that private, protected, public, and module_function without arguments
do not affect the environment outside the eval string.
For example, `class Foo; eval "private"; def foo; end; end' doesn't make
Foo#foo private.

* Kernel#untrusted?, untrust, and trust
* These methods are deprecated and their behavior is same as tainted?,
taint, and untaint, respectively. If $VERBOSE is true, they show warnings.

* Module#ancestors
* The ancestors of a singleton class now include singleton classes,
in particular itself.

* Module#define_method and Object#define_singleton_method
* Now they return the symbols of the defined methods, not the methods/procs
themselves.

* Numeric#quo
* Raises TypeError instead of ArgumentError if the receiver doesn't have
to_r method.

* Proc
* Returning from lambda proc now always exits from the Proc, not from the
method where the lambda is created. Returing from non-lambda proc exits
from the method, same as the former behavior.

=== Stdlib updates (outstanding ones only)

* CGI::Util
* All class methods modulized.

* Digest
* extended methods:
* Digest::Class.file takes optional arguments for its constructor

* Matrix
* Added Vector#cross_product.

* Net::SMTP
* Added Net::SMTP#rset to implement the RSET command

* Pathname
* New methods:
* Pathname#write
* Pathname#binwrite

* OpenSSL::BN
* extended methods:
* OpenSSL::BN.new allows Fixnum/Bignum argument.

* open-uri
* Support multiple fields with same field name (like Set-Cookie).

* rake
* Updated to 10.1.0. Major changes include removal of the class namespace,
Rake::DSL to hold the rake DSL methods and removal of support for legacy
rake features.

For a complete list of changes since rake 0.9.6 see:

http://rake.rubyforge.org/doc/release_notes/rake-10_1_0_rdoc.html

http://rake.rubyforge.org/doc/release_notes/rake-10_0_3_rdoc.html

* RDoc
* Updated to 4.1.0.preview.1. Major enhancements include a modified default
template and accessibility enhancements.

For a list of minor enhancements and bug fixes see:
https://github.com/rdoc/rdoc/blob/v4.1.0.preview.1/History.rdoc

* Resolv
* New methods:
* Resolv::DNS.fetch_resource

* One-shot multicast DNS support
* Support LOC resources

* REXML::Parsers::SAX2Parser
* Fixes wrong number of arguments of entitydecl event. Document of the event
says "an array of the entity declaration" but implemenation passes two
or more arguments. It is an implementation bug but it breaks backword
compatibility.

* REXML::Parsers::StreamParser
* Supports "entity" event.

* REXML::Text
* REXML::Text#<< supports method chain like 'text << "XXX" << "YYY"'.
* REXML::Text#<< supports not "raw" mode.

* Rinda::RingServer, Rinda::RingFinger
* Rinda now supports multicast sockets. See Rinda::RingServer and
Rinda::RingFinger for details.

* RubyGems
* Updated to 2.2.0.preview.1 For a list of enhancements and bug fixes see:
https://github.com/rubygems/rubygems/blob/v2.2.0.preview.1/History.txt

* Set
* New methods:
* Set#intersect?
* Set#disjoint?

* Socket
* New methods:
* Socket.getifaddrs

* StringScanner
* extended methods:
* StringScanner#[] supports named captures.

* Syslog::Logger
* Added facility.

* Tempfile
* New methods:
* Tempfile.create

* Timeout

* No longer an exception to terminate the given block can be rescued
inside the block, by default, unless the exception class is given
explicitly.

* TSort
* New methods:
* TSort.tsort
* TSort.tsort_each
* TSort.strongly_connected_components
* TSort.each_strongly_connected_component
* TSort.each_strongly_connected_component_from

* WEBrick
* The body of a response may now be a StringIO or other IO-like that responds
to #readpartial and #read.

* XMLRPC::Client
* New methods:
* XMLRPC::Client#http. It returns Net::HTTP for the client. Normally,
it is not needed. It is useful when you want to change minor HTTP client
options. You can change major HTTP client options by XMLRPC::Client
methods. You should use XMLRPC::Client methods for changing major
HTTP client options instead of XMLRPC::Client#http.

=== Stdlib compatibility issues (excluding feature bug fixes)

* objspace
* new method:
* ObjectSpace.trace_object_allocations
* ObjectSpace.trace_object_allocations_start
* ObjectSpace.trace_object_allocations_stop
* ObjectSpace.trace_object_allocations_clear
* ObjectSpace.allocation_sourcefile
* ObjectSpace.allocation_sourceline
* ObjectSpace.allocation_class_path
* ObjectSpace.allocation_method_id
* ObjectSpace.allocation_generation
* ObjectSpace.reachable_objects_from_root

* Set
* incompatible changes:
* Set#to_set now returns self instead of generating a copy.

* URI
* incompatible changes:
* URI.decode_www_form follows current WHATWG URL Standard.
It gets encoding argument to specify the character encoding.
It now allows loose percent encoded strings, but denies ;-separator.

* URI.encode_www_form follows current WHATWG URL Standard.
It gets encoding argument to convert before percent encode.
UTF-16 strings aren't converted to UTF-8 before percent encode by default.

=== Built-in global variables compatibility issues

* $SAFE
* $SAFE=4 is obsolete. If $SAFE is set to 4 or larger, an ArgumentError
is raised.

=== C API updates

See NEWS file
Now, much smaller than Ruby 2.0

Object management on Ruby 2.1 by Koichi
Sasada at RubyConf2013

Ruby 2.1 new features

• New Numeric syntax (1/2r => Rational(1, 2), etc.)

• “def” returns a symbol of method name

• Refine features introduced from Ruby 2.0
• Keyword arguments
• Refinements
• Module#prepend

• New methods
• Refine m17n introduced from Ruby 1.9

• String#scrub, String#scrub!
• Verify and fix invalid byte sequence.

• Enumerable#to_h

• Frozen objects
• All symbols
• Frozen string is discussed now

15
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

Ruby 2.1 Internal improvements

• Profiling supports
• Additional internal hooks for object allocation and

deallocation
• Profiling API

• More sophisticated garbage collection
• RGenGC: Introduce generational GC into CRuby
• GC Parameter tuning
• Other tuning

• More sophisticated method caching

• Bignum/Integer improvements

• …

Today’s topic
Object management

16
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

New Profiling support

• Internal hooks for object management

• Profiling API to get backtrace information without
huge overhead

17
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

Internal hooks for object management
What’s nice?

• You can collect more detailed analysis

• Examples
• Collect object allocation site information

• Collect usage of allocated objects

• Measure GC performance from outside

18
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

Internal hooks for object management

• 4 added events
• RUBY_INTERNAL_EVENT_NEWOBJ

• When object is created

• RUBY_INTERNAL_EVENT_FREEOBJ
• When object is freed

• RUBY_INTERNAL_EVENT_GC_START
• When GC is started

• RUBY_INTERNAL_EVENT_GC_END
• When GC is finished

19

Ruby

Mark
Sweep

Stop the
(Ruby)
World

Sweep Sweep Sweep Sweep

GC
Start

GC
End

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

Internal hooks for object management
Caution

• You can *NOT* trace these events using TracePoint
(introduced from 2.0)

• You need to write C-ext to use them, because
events are invoked during GC, etc

• Use new “postponed job” API

20
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

Internal hooks for object management
Sample feature using new hooks

• ObjectSpace. trace_object_allocations
• Trace object allocation and record allocation-site

• Record filename, line number, creator method’s id and class

• Usage:
ObjectSpace.trace_object_allocations{ # record only in the block

o = Object.new

file = ObjectSpace.allocation_sourcefile(o) #=> __FILE__

line = ObjectSpace.allocation_sourceline(o) #=> __LINE__ -2

}

• Demonstration

21
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

Ruby 2.1

To be more sophisticated

object management

22
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

Better Object management

• Refactoring object management code
• Object management code is in “gc.c” in CRuby

• I have rewritten (am rewriting) gc.c many parts

• “gc.c” → 3414 insertions, 1121 deletions

• GC parameter tuning

• New GC algorithm called “RGenGC”
• Generational garbage collection

• Keep compatibility and performance

23
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

GC parameter tuning

Introduce only one case

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

24

GC parameter tuning

• When GC occur?
(1) There are no slot to allocate object

(2) Exceed threshold of memory allocation

• (1) is easy to understand

• Introduce (2) more details

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

25

GC parameter tuning
malloc_increase and malloc_limit
• Memory allocation → GC

• Every time allocate “n” size memory (call malloc(n))
increase “malloc_increase” with “n”

• If malloc_increase > malloc_limit, then cause GC

• Default parameter of “malloc_limit” is “8MB”!!
• Too small!!

• String read from 8MB file

• An array which has 1M entry on 64bit CPU

• I ask Matz “why such small value?”

• His reply is “I used 10MB machine at 20 years old”

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

26

GC parameter tuning
Dynamic tuning of “malloc_limit”
• Default: 8MB → 16MB

• Adaptive tuning
• If “malloc_increase” exceeds “malloc_limit”, then

increase “malloc_limit”
• Increase “malloc_limit” by a factor of environment variable

“GC_MALLOC_LIMIT_GROWTH_FACTOR” (default is 1.4)

• Maximum value of “malloc_limit” can be set with environment
variable “GC_MALLOC_LIMIT_MAX” (default is 32MB)

• If “malloc_increase” doesn’t exceed limit, then decrease
“malloc_limit”

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

27

0

5

10

15

20

25

30

35

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

2
0

5

2
1

1

2
1

7

2
2

3

2
2

9

2
3

5

2
4

1

2
4

7

2
5

3

2
5

9

2
6

5

2
7

1

increase(2.0) limit(2.0) increase(2.1) limit(2.1)

GC parameter tuning
Dynamic tuning of “malloc_limit”

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

28

Grow limit aggressively
on Ruby 2.1

Small limit cause
many GCs

Introduce

Generational GC

into CRuby

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

29

RGenGC: Summary
• RGenGC: Restricted Generational GC

• New generational GC algorithm allows mixing “Write-
barrier protected objects” and “WB unprotected objects”

• No (mostly) compatibility issue with C-exts

• Inserting WBs gradually
• We can concentrate WB insertion efforts for major objects

and major methods

• Now, Array, String, Hash, Object, Numeric objects are WB
protected
• Array, Hash, Object, String objects are very popular in Ruby

• Array objects using RARRAY_PTR() change to WB unprotected
objects (called as Shady objects), so existing codes still works.

30
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

RGenGC: Previous talk

• Algorithm is introduced at
• RubyKaigi2013

• Euruko2013

• See also these slides/movie for details

31
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

RGenGC: Agenda

• Background
• Generational GC

• Ruby’s GC strategy

• Proposal: RGenGC
• Separating into normal objects and shady objects

• Shady objects at marking

• Shade operation

• Implementation

32
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

RGenGC: Background
Current CRuby’s GC
• Mark & Sweep

• Conservative

• Lazy sweep

• Bitmap marking

• Non-recursive marking

• C-friendly strategy
• Don’t need magical macros in C source codes

• Many many C-extensions under this strategy

33

GC Lecture

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

RGenGC
Restriction of CRuby’s GC
1. Because of “C-friendly” strategy:

• We can’t know object relation changing timing
• We can’t use “Moving GC algorithm” (such as

copying/compacting)

2. Because of “Object data structure”:
• We can’t measure exact memory consumption
• Based on assumption: “malloc” library may be

smarter than our hack
• We rely on “malloc” library for memory allocations
• GC only manage “object” allocation/deallocation

GC Lecture

34
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

marked

marked marked

markedmarked

RGenGC: Background
Mark & Sweep

1. Mark reachable
objects from root
objects

2. Sweep unmarked
objects (collection
and de-allocation)

Root objects

free

traverse

traverse traverse

traverse traverse

free

free

Collect unreachable
objects

35

GC Lecture

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

RGenGC: Background
Generational GC (GenGC)

•Weak generational hypothesis:

“Most objects die young”

→ Concentrate reclamation effort

only on the young objects

36

GC Lecture

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

RGenGC: Background
Generational hypothesis

0

10

20

30

40

50

60

70

80

90

100

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102

Pe
rc

en
ta

ge
 o

f
d

ea
d

 o
b

je
ct

#

Lifetime (Survibing GC count)

Object lifetime in RDoc
(How many GCs surviving?)

GC Lecture

95% of objects dead by the first GC

37
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

RGenGC: Background
Generational hypothesis

0

10

20

30

40

50

60

70

80

90

100

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102

Pe
rc

en
ta

ge
 o

f
d

ea
d

 o
b

je
ct

#

Lifetime (Survibing GC count)

Object lifetime in RDoc
(How many GCs survive?)

T_OBJECT T_CLASS T_MODULE T_STRING T_REGEXP

T_ARRAY T_HASH T_STRUCT T_BIGNUM T_FILE

T_DATA T_MATCH T_NODE T_ICLASS

GC Lecture

Some type of objects (like Class)
has long lifetime

38
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

RGenGC: Background
Generational GC (GenGC)

• Separate young generation and old generation
• Create objects as young generation

• Promote to old generation after surviving n-th GC

• In CRuby, n == 1 (after 1 GC, objects become old)

• Usually, GC on young space (minor GC)

• GC on both spaces if no memory (major/full GC)

39

GC Lecture

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

RGenGC: Background
Generational GC (GenGC)
• Minor GC and Major GC can use different GC

algorithm
• Popular combination is:

Minor GC: Copy GC, Major GC: M&S

• On the CRuby, we choose:

Minor GC: M&S, Major GC: M&S

• Because of CRuby’s restriction (we can’t use moving
algorithm)

40

GC Lecture

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

RGenGC: Background: GenGC
[Minor M&S GC]

• Mark reachable objects from
root objects.
• Mark and promote to old

generation
• Stop traversing after old

objects

→ Reduce mark overhead

• Sweep not (marked or old)
objects

• Can’t collect Some
unreachable objects

•

Root objects

new

new new

new/
free

newnew

traverse

traverse traverse

traverse traverse

new/
free

old/
free

Don’t collect old object
even if it is unreachable.

collect

1st MinorGC

41

old

old old

oldold

GC Lecture

RGenGC: Background: GenGC
[Minor M&S GC]

• Mark reachable objects from
root objects.
• Mark and promote to old

generation
• Stop traversing after old

objects

→ Reduce mark overhead

• Sweep not (marked or old)
objects

• Can’t collect Some
unreachable objects

•

Root objects

old

old old

new/
free

oldold

traverse

ignore ignore

ignore ignore

new/
free

old/
free

Don’t collect old object
even if it is unreachable.

collect

2nd MinorGC

42

GC Lecture

RGenGC: Background: GenGC
[Major M&S GC]

• Normal M&S

• Mark reachable objects from
root objects
• Mark and promote to old gen

• Sweep unmarked objects

• Sweep all unreachable
(unused) objects

Root objects

new

old new

new/
free

oldold

traverse

traverse traverse

traverse traverse

new/
free

old/
free

collect

collect

43

GC Lecture

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

RGenGC: Background: GenGC
Problem: mark miss

• Old objects refer young objects

→ Ignore traversal of old object

→ Minor GC causes

marking leak!!
• Because minor GC ignores

referenced objects by old
objects

44

Root objects

new

old

new

oldold

traverse

traverse

ignore ignore

old

Can’t mark new object!
→ Sweeping living object!

(Critical BUG)
ignore

GC Lecture

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

RGenGC: Background: GenGC
Introduce Remember set (Rset)

1. Detect creation of an
[old->new] type
reference

2. Add an [old object] into
Remember set (RSet) if
an old object refer new
objects

45

Root objects

new

old

new

oldold

traverse

traverse

Remember
ignore ignore

old

Remember
set (RSet)

GC Lecture

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

RGenGC: Background: GenGC
[Minor M&S GC] w/ RSet

1. Mark reachable
objects from root
objects
• Remembered objects are

also root objects

2. Sweep not (marked or
old) objects

Root objects

new

old

new

oldold

traverse

traverse

traverseignore ignore

old

Remember
set (RSet)

collect

new/
free

new/
free

46

traverse

GC Lecture

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

RGenGC: Background: GenGC
Write barrier
• To detect [old→new] type references, we need to

insert “Write-barrier” into interpreter for all
“Write” operation

47

newold

“Write barrier”
[Old->New] type reference

Detected!

GC Lecture

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

RGenGC
Back to Ruby’s specific issue

48
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

RGenGC: CRuby’s case
Write barriers in Ruby
• Write barrier (WB) example in Ruby world

• (Ruby) old_ary[0] = new0 # [old_ary → new0]

• (Ruby) old_obj.foo = new1 # [old_obj → new1]

49

0

1

2

3

old_ary

new0

old_obj

foo

bar

new1

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

RGenGC: CRuby's case
Difficulty of inserting write barriers
• To introduce generational garbage collector, WBs are

necessary to detect [old→new] type reference

• “Write-barrier miss” causes terrible failure
1. WB miss

2. Remember-set registration miss

3. (minor GC) marking-miss

4. Collect live object → Terrible GC BUG!!

50
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

RGenGC: Problem
Inserting WBs into C-extensions (C-exts)
• All of C-extensions need perfect Write-barriers

• C-exts manipulate objects with Ruby’s C API
• C-level WBs are needed

• Problem: How to insert WBs into C-exts?
• There are many WB required programs in C-exts

• Example (C): RARRAY_PTR(old0)[0] = new1
• Ruby C-API doesn’t require WB before

• CRuby interpreter itself also uses C-APIs

• How to deal with?
• We can rewrite all of source code of CRuby interpreter to add WB,

with huge debugging effort!!
• We can’t rewrite all of C-exts which are written by 3rd party

51
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

RGenGC: Problem
Inserting WBs into C-extensions (C-exts)

Performance Compatibility

1 Give up GenGC Poor
Good

(No problem)

2
GenGC with re-

writing all of C exts
Good

Most of C-exts
doesn’t work

2.0 and
earlier

conservative

choice

52

Two options

Trade-off of Speed and Compatibility

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

RGenGC: Challenge

• Trade-off of Speed and Compatibility
• Can we achieve both speed-up w/ GenGC and keeping

compatibility?

• Several possible approaches
• Separate heaps into the WB world and non-WB world

• Need to re-write whole of Ruby interpreter

• Need huge development effort

• WB auto-insertion
• Modify C-compiler

• Need huge development effort

53
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

RGenGC: Our approach
• Create new generational GC algorithm permits WB

protected objects AND WB un-protected object in
the same heap

RGenGC: Restricted Generational
Garbage Collection

54
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

RGenGC: Invent 3rd option

Performance Compatibility

1 Give up GenGC Poor
Good

(No problem)

2
GenGC with re-

writing all of C codes
Good

Most of C-exts
doesn’t work

3 Use new RGenGC Good
Most of C-exts

works!!

Ruby 2.1
choice

55

Breaking the trade off. You can praise us!!

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

RGenGC:
Key idea
• Introduce Shady object

• I use the word “Shady” as
questionable, doubtful, …

• Something feeling dark

• 日陰者, in Japanese

56
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

RGenGC:
Key Idea
• Separate objects into two types

• Normal Object: WB Protected

• Shady Object: WB Unprotected

• We are not sure that a shady object points new
objects or not

• Decide this type at creation time
• A class care about WB → Normal object

• A class don’t care about WB → Shady object

Shady: doubtful,
questionable, ...

57

Shady
（´･ω･`）

Normal
＼（＾o＾）／

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

RGenGC:
Key Idea

• Normal objects can be
changed to Shady objects
• “Shade operation”

• C-exts don’t care about WB,
objects will be shady objects

• Example
• ptr = RARRAY_PTR(ary)

• In this case, we can’t insert WB for
ptr operation, so VM shade “ary”

58

Normal
obj

Shady
obj

VM

Shade

Create

Now, Shady object can’t
change into normal object

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

RGenGC
Key Idea: Rule
• Treat “Shady objects” correctly

• At Marking

1. Don’t promote shady objects to old objects

2. Remember shady objects pointed from old objects

• At Shade operation for old normal objects

1. Demote objects

2. Remember shaded shady objects

59
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

RGenGC
[Minor M&S GC w/Shady object]

• Mark reachable objects
from root objects
• Mark shady objects, and

don’t promote to old gen
objects

• If shady objects pointed
from old objects, then
remember shady objects
by RSet.

→ Mark shady objects
every minor GC!!

Root objects

new

new

shady
new

traverse

traverse

traverse traverse

old

Remember
set (RSet)

collect

new/
free

new/
free

traverse

1st MinorGC

mark and
remember

remember

60

old

old

old

newold Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

RGenGC
[Minor M&S GC w/Shady object]

• Mark reachable objects
from root objects
• Mark shady objects, and

don’t promote to old gen
objects

• If shady objects pointed
from old objects, then
remember shady objects by
RSet.

→ Mark shady objects
every minor GC!!

Root objects

old

old

old

shady
old

traverse

ignore

ignore
ignore

old

Remember
set (RSet)

collect

new/
free

new/
free

traverse

traverse

2nd MinorGC

61
new

traverse

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

old

RGenGC
[Shade operation]

• Anytime Object can give up to
keep write barriers

→ [Shade operation]

• Change old normal objects to
shade objects
• Example: RARRAY_PTR(ary)

(1) Demote object (old → new)

(2) Register it to Remember Set

old

Shadyold

new

Remember
set (RSet)

62
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

RGenGC
Timing chart

Ruby Mark Sweep

Stop the (Ruby)
World

Sweep Sweep Sweep Sweep

2.0.0 GC (M&S w/lazy sweep)

w/RGenGC (Minor GC)

Ruby
Mark

Sweep

Stop the
(Ruby)
World

Sweep Sweep Sweep Sweep

• Shorter mark time (good)
• Same sweep time (not good)
• (little) Longer execution time b/c WB (bad)

63
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

RGenGC
Number of objects

2.0.0 GC (M&S)

of Living objects # of Freed objects

w/RGenGC (Minor GC)

of Living objects # of Freed objects

of old
objects
(#old)

of new
objects (#new)

of freed
but remembered

objects

(a) (b)

(a) # of old objects by WB
(b) # of shady objects pointed by old
(c) # of old but shady objects

(c)

64
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

RGenGC
Number of objects

Marking space Number of unused,
uncollected objs

Sweeping
space

Mark&Swep GC # of Living objects 0 Full heap

Traditional GenGC #new + (a) (a) #new

RGenGC #new + (a) + (b) + (c) (a) + (b) Full heap

w/RGenGC (Minor GC)

of Living objects # of Freed object

of old
object
(#old)

of new
object (#new)

of freed
but remembered

objects

(a) (b)

(c)
(a) # of old objects by WB
(b) # of shady objects pointed by old
(c) # of old but shady objects

65
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

RGenGC
Discussion: Pros. and Cons.

• Pros.
• Allow WB unprotected objects (shady objects)

• 100% compatible w/ existing extensions which don’t care about WB

• A part of CRuby interpreter which doesn’t care about WB

• Inserting WBs step by step, and increase performance
gradually
• We don’t need to insert all WBs into interpreter core at a time

• We can concentrate into popular (effective) classes/methods.

• We can ignore minor classes/methods.

• Simple algorithm, easy to develop (already done!)

66
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

RGenGC
Discussion: Pros. and Cons.
• Cons.

• Increasing “unused, but not collected objects until full/major
GC
• Remembered normal objects (caused by traditional GenGC

algorithm)
• Remembered shady objects (caused by RGenGC algorithm)

• WB insertion bugs (GC development issue)
• RGenGC permit shady objects, but sunny objects need

correct/perfect WBs. But inserting correct/perfect WBs is difficult.
• This issue is out of scope. We have another idea against this

problem (out of scope).
• Can’t reduce Sweeping time

• But many (and easy) well-known techniques to reduce sweeping
time (out of scope).

• Increase complexity
• Additional tuning parameters

67
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

RGenGC
Implementation: WB support status

68

Type name Status Comment

T_OBJECT Supported

T_CLASS Supported Possible to change into shady

T_ICLASS Supported Possible to change into shady

T_MODULE Supported Possible to change into shady

T_FLOAT Supported

T_STRING Supported

T_REGEXP Supported

T_ARRAY Supported Possible to change into shady / more efforts are needed

T_HASH Supported Possible to change into shady

T_STRUCT Supported

T_BIGNUM Supported

T_FILE Unsupported Not yet

T_DATA Supported Only InstructionSequence objects are supported

T_MATCH Unsupported Most of MatchData objects are short-lived

T_RATIONAL Supported

T_COMPLEX Supported

T_NODE Unsupported Most of Node objects are short-lived

RGenGC
Implementation
• Introduce two flags into RBasic

• FL_KEEP_WB: WB protected or not protected
• 0 → unprotected → Shady object
• 1 → protected → Sunny object
• Usage: NEWOBJ_OF(ary, struct RArray, klass, T_ARRAY | FL_KEEP_WB);

• FL_PROMOTED: Promoted or not
• 0 → Young gen
• 1 → Old gen
• Don’t need to touch by user program

• Remember set is represented by bitmaps
• Same as marking bitmap
• heap_slot::rememberset_bits
• Traverse all object area with this bitmap at first

69
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

RGenGC
Implementation: WB operation API

• OBJ_WRITE(a, &a->x, b)
• Declare ‘a’ aggregates ‘b’

• Write: *&a->x = b

• Write barrier

• OBJ_WRITE(a, b) returns “a”

• OBJ_WRITTEN(a, oldv, b)
• Declare ‘a’ aggregates ‘b’ and old value is ‘oldv’

• Non-write operation

• Write barrier

70

‘a’

‘&a->x’

oldv

b

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

RGenGC
Implementation: WB operation API
• T_ARRAY

• RARRAY_PTR(ary) causes shade operation
• Can’t get RGenGC performance improvement

• But works well  (Do not need to modify codes)

• Instead of RARRAY_PTR(ary), use alternatives
• RARRAY_AREF(ary, n) → RARRAY_PTR(ary)[n]

• RARRAY_ASET(ary, n, obj) → RARRAY_PTR(ary)[n] = obj w/
Write-barrier

• RARRAY_PTR_USE(ary, ptrname, {...block...})
• Only in block, pointers can be accessed by `ptrname’ variable

(VALUE*).

• Programmers need to insert collect WBs (miss causes BUG).

71

Important!!

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

RGenGC
Incompatibility
• Make RBasic::klass “const”

• Need WBs for a reference from an object to a klass.

• Only few cases (zero-clear and restore it)

• Provide alternative APIs
• Now, RBASIC_SET_CLASS(obj, klass) and

RBASIC_CLEAR_CLASS(obj) is added. But they should be
internal APIs (removed soon).

• rb_obj_hide() and rb_obj_reveal() is provided.

72
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

RGenGC
Performance evaluation
• Ideal micro-benchmark for RGenGC

• Create many old objects at first

• Many new objects (many minor GC, no major GC)

• RDoc
• Same “make doc” task from trunk

73
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

RGenGC
Performance evaluation (micro)

0

100000000

200000000

300000000

400000000

500000000

600000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Ex
e

cu
ti

o
n

 t
im

e
 b

y
R

D
TS

C

GC count

mark (RGENGC)

sweep (RGENGC)

mark

sweep

• Shorter mark time (good)
• Same sweep time (not good)

74

Same sweep
time 

Good mark
time 

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

0

50

100

150

200

250

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

1
0

9

1
1

8

1
2

7

1
3

6

m
s

GC count

Compare with M&S and RGenGC

mark (ms)

sweep (ms)

rgengc/mark (ms)

rgengc/sweep (ms)

* Disabled lazy sweep to measure correctly.

RGenGC
Performance evaluation (RDoc)

75

Major/full
GC peaks

Faster minor
GC

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

0

2

4

6

8

10

12

14

Total mark time (ms) Total sweep time (sec)

A
cc

u
m

u
la

te
d

 e
xe

cu
ti

o
n

 t
im

e
 (

se
c)

w/o RGenGC RGenGC

RGenGC
Performance evaluation (RDoc)

76

About x15 speedup!

* Disabled lazy sweep to measure correctly.
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

RGenGC
Performance evaluation (RDoc)

77

* 12% improvements compare with w/ and w/o RGenGC
* Disabled lazy sweep to measure correctly.

103.7627479 102.3799865

16.04393815
4.946003494

0

20

40

60

80

100

120

140

w/o RGenGC RGenGC

To
ta

l e
xe

cu
ti

o
n

 t
im

e
(s

ec
)

other than GC GC

RGenGC: Summary

• RGenGC: Restricted Generational GC
• New GC algorithm allow mixing “Write-barrier protected

objects” and “WB unprotected objects”

• (mostly) No compatibility issue with C-exts

• Inserting WBs gradually
• We can concentrate WB insertion efforts for major objects

and major methods

78
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

RGenGC
Remaining task
• Reduce old objects

• Short lived objects promotion old-gen accidentally is harmful

• Minor GC / Major GC timing tuning
• Too many major GC → slow down

• Too few major GC → memory consumption issue

• Inserting WBs w/ application profiling
• Profiling system

• Benchmark programs

• Debugging/Detecting system for WBs bugs

• Improve sweeping performance

79
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

Remaining task

• To reduce old objects

→ 3 Generations GC (3GenGC)

• Minor GC / Major GC timing tuning

→ Count oldgen objects count

→ Estimate oldgen space

80
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

Three generational GC (3GenGC)
Problem
• RGenGC introduces two generation “Young” and

“Old”

• Some “short-lived” young object will be promoted
as old-gen accidentally
• Ex: loop{a = Object.new; b = Object.new}

• If such “short-lived” objects consumes huge
memory, we need to free such objects
• Ex: loop{Array.new(1_000_000)} # 1M entries

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

81

Three generational GC (3GenGC)
Idea
• Add new generation “Infant” generation

• Before: Young → Old

• After 3gen GC: Infant → Young → Old

• Most of objects died in infant, and also young gen
• Good: Avoid short-lived old-gen objects

• Good: Reduce full-GC timing

• Bad: Some overhead

• We implemented this feature and evaluating it
now

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

82

Estimated oldgen space
Problem
• We can not measure how oldgen objects consume

memories collectly
• A few oldgen objects can grab huge memory

• Major GC takes long time

• Trade-off between time and memory usage

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

83

Estimate oldspace
Idea
• Estimate how much memory old-gen objects

consumes

• Invoke full GC when estimation exceed the
threshold
• Good: More correct major GC timing
• Bad: Some overhead to measure memory size
• Bad: More tuning parameters

• We implemented this feature and evaluating it
now

84
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

Future work
For smarter object management
• Need more tuning

• Some program slower than Ruby 2.0.0

• We need practical benchmarks (other than RDoc)

• Parallel marking/sweeping
• Parallel sweeping is already implemented

<https://github.com/ko1/ruby/tree/parallel_sweep>,
however, it does not improve performance…

• Concurrent marking to reduce full marking stop
time

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

85

Summary of this talk

• Ruby 2.1.0 will be released soon!
• 2013/12/25
• Some new features and internal performance

improvements

• Rewrite object management to improve
performance
• “gc.c” → 3414 insertions, 1121 deletions
• Allocation/Deletion trace mechanism
• Introduce generational mechanism
• Tuning GC parameters
• Optimize object allocation path
• Refactoring (terminology, method path, etc)

86
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

Thank you

Koichi Sasada

Heroku, Inc.

<ko1@heroku.com>

87
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

Object management on Ruby 2.1
by Koichi Sasada at RubyConf2013

88

Questions and answers

89
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

Questions and Answers
RGenGC and CoW friendly
• No problem because only touch flags for oldgen

and shady

90
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

Questions and Answers
GC + Threads
• Parallel GC

• Run GC process in parallel (simultaneously)

• Parallel marking

• Parallel sweeping (in today’s talk)

• Concurrent GC / Incremental GC
• Run ruby threads (mutator threads) and GC threads

concurrently

• Major GC consumes huge time (same as current GC) →
Need concurrent GC to reduce pause time

• New WB API is also designed for concurrent GC

91
Object management on Ruby 2.1

by Koichi Sasada at RubyConf2013

