
Gradual Write-Barrier Insertion
into a Ruby Interpreter

Koichi Sasada

Cookpad Inc.

ISMM 2019, June 23, 2019

Summary
• Now Ruby interpreter (2.6, 2018) employed advanced GCs.

• Generational GC from Ruby 2.1 (2013)
• Incremental GC from Ruby 2.2 (2014)
• Ruby 2.0 and before used naïve “M&S GC” algorithm

• Write barriers (WBs) were issue to introduce these GCs.
• To keep compatibility, we are not able to introduce WBs for 3rd party C-

extension libraries.

• Proposal: New concept: “WB unprotected object”
• Giving up WB insertion completely, but mark “WB unprotected”
• Invented at 2013 for Ruby 2.1.
• We can introduced advanced GCs with keeping compatibility.

• Our approach allows Gradual WB development.

Background
Ruby language
•Ruby is Object-Oriented programming language

• Developed by Yukihiro Matsumoto (1993~)
• Developed actively.

• Koichi is one of the Ruby committers working on VM, GC,
Concurrency management and so on.

•Ruby on Rails web-application framework is used
widely, in world-wide.
• Several Ruby interpreters are available.

• “ruby” command written in C (target of this research)
• JRuby, Truffle Ruby written in Java
• mruby written in C, for embedded systems

Background
Ruby (Ruby on Rails) is used seriously.

•One of our service
• 72 countries, 29 languages
• Around 96 million monthly
unique users

• is written in Ruby language

→ Performance of Ruby has
huge impact, at least on our
business

(2019/03/31)

Background
GC before Ruby 2.1 (~2013)
•Mark and Sweep GC

• M&S GC stops application long time.
• This was one of reason why “Ruby is SLOW”.

•Conservative marking
• Allows to write C implementation without special

macros.
• ex) Free to update references in C assignments.
// New reference from an Array object to obj

RARRAY_PTR(ary)[10] = obj;

• Ruby supports C-extension libraries with this technique.
• 3rd party can extend Ruby with C-extensions.
• There are many C-extensions to support Ruby’s eco-system.

• Moving is not allowed (mostly is acceptable)

Background
Generational GC

• GenGC is well-known technique.
• Faster than full GC because

collecting only young objects.

• GenGC requires write-barriers
• To detect “Old” to “Young”

reference, write-barriers (WBs)
should be introduced.

• “Completeness” is required.
• 1 oversight cause fatal error.

Y O

Young object Old object

Y

Y

O

Y O O

[@runtime]
should be detected
by write-barrier
and pointed from RS

Stop traversing
when we reach
an old objects

Root-set

Remember
set (RS)

Generational marking

Problem: Inserting WBs

• Issue: Development cost
• Practically, it is very difficult task to introduce
WBs into Ruby code (250K lines in C) at once

• Issue: Compatibility
• We need to re-write C code with WBs if needed.
• We can not modify 3rd party C-extension libraries.
• Drop old libs? vs. Give up GenGC?

• If we need to rewrite all C-extensions, the update
should be very difficult for existing Ruby users.

• Make a new interpreter natively support good GC?

Background and Problem

•Ruby 2.0 (2013) needed Generational GC for speed.

•However, inserting write-barriers into C source code

completely is

difficult for huge ruby’s source code

impossible for 3rd party C-extensions

Trade off between Speed and Compatibility

Proposal: WB unprotected objects

• Introduce WB protected and unprotected attribute for
all objects
• WB protected objects (WBp) can detect new reference

creation from them. Unprotected objects (WBunp) can not.
• GC algorithm need to care about WB unprotected objects.

• Increase WB protected objects gradually.
• When we insert WBs into class K data structure, then all

instance of class K are WB protected objects.
• We can priorities WB insertion development

→ Flexible development
• Frequently used data types (Array, Hash, …) have high priority.
• Scalar data types (String, …) also have high priority because it is easy.

WB unprotect operation

•WBp can become WBunp by WB unprotect operation
• If C code acquire internal data structure such as Array

memory block, the Array object becomes WBunp because
unexpected reference can be created by C code.

ex)
// RARRAY_PTR() macro makes “ary” unprotect.
ptr = RARRAY_PTR(ary);
// This line creates new ref: ary→obj
// which GC can not detect.
ptr[10] = obj;

Generational marking

• Basic algorithm
• Two generations: Young and Old

• Objects have age 0~3 and age 3
is an old object.

• Only generational marking (not
generational sweeping)

• Minor GC and Major (full) GC

Y

Y

O

Y O O

[at runtime]
should be detected
by write-barrier
and pointed from RS

Generational marking without WB
unprotected objects (= normal Gen GC)

Root-set

Remember
set (RS)

NOTE: See our paper to refer complete algorithm

Stop traversing
when we reach
an old objects

Generational marking with
WB unprotected objects

•Additional Rule for WBunp
1. WBunp can not promote.
2. If old objects refer to a

WBunp, then the WBunp is
remembered until next
major GC because WBunp
can refer young objects.

3. If Old objects become
WBunp by WBunpOp, it will
be remembered.

Y

Y

O

Y O O

Generational marking with
WB unprotected objects (proposal)

Root-set

Remember
set (RS)

U WB unprotected objects

U

Y

mark
normally.

U

Y

[New rule 2]

Incremental marking
with WB unprotected objects.

•At the end of normal incremental marking (3
color algorithm), mark all living (black) WBunp
at once (not incremental).
• This phase can introduce long pause time.
• O(n), n is the number of living WBunp.

NOTE: See our paper to refer complete algorithm

Implementation technique
Bitmap

•We introduce bitmap to represent WBunp .
• With this bitmap and marking bitmap, we can easy
to list “living WBunp” for incremental GC.

WBunp bit 0 1 1 0 0 0 0

Marking bit 1 1 0 0 1 1 0

Living WB unprotected object

Evaluation
Measurements

• Several measurements
• Microbenchmark
• Application benchmark

• RDoc

• Ruby on Rails web application

• Environment
• Intel(R) Core(TM) i7-6700 CPU, 64GB of memory,

Ubuntu 18.04.2, gcc 7.3.0
• ruby 2.7.0dev (2019-03-08 trunk 67194) x86_64-linux

Evaluation
Microbenchmark
def make_linked_list n

list = []

n.times{

list = [list]

$prob is percentage

of WB unprotected objs.

if rand(100) < $prob

list.wb_unprotect

end

}

list

end

Create a long linked list

huge_list = make_linked_list(

10_000_000)

Create 100 M empty arrays

to invoke minor GC

100_000_000.times { [] }

We can control the ratio of WB unprotected arrays.

Evaluation
Microbenchmark

0

2

4

6

8

10

12

14

Percentage of WB unprotected objects

(rightmost datapoints is "disabled" results with $prob == 0)

T
im

e
 (

s
)

total time

GC time

Increasing WBunp slows down the application.

L
o
w

e
r

is
 b

e
tt

e
r

Application benchmark
RDoc

•RDoc is document generation system
• Reading ruby/c source code and generate
formatted reference.

• Source is ruby’s source code.

Total time (s) GC time (s)

Disabled 30.46 10.20

Enabled 22.57 1.63

The ratio ofWBunp objects is 2%.

Application benchmark
RDoc (sampling per 10 GCs)

0 50 100 150 200

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

of GC

#
 o

f
o

b
je

c
ts

Living objects

Remembered WB

unprotected objects
Old objects

There are only few remembered WB unprotected objects

Application benchmark
RDoc (sampling per 1 GC)

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

0 50 100 150 200

#
 o

f
o
b

je
c
ts

of GC
Living objects Remembered WB unprotected objects Old objects

Application benchmark
Discourse (Ruby on Rails web app)
Page 50% 75% 90% 99%

categories

Disable 36 44 148 159

Enabled 35 36 52 87

home

Disable 39 148 161 164

Enabled 39 42 56 96

categories_admin

Disable 64 179 186 194

Enabled 63 70 82 147

home_admin

Disable 71 180 186 194

Enabled 67 80 86 157

Generational GC improve performance (~90%)
Incremental GC is effective, but not enough (99%).

(response time percentile
in milliseconds)

Evaluation
Gradual WB development

• We can give up difficult WB insertions
• Some kind of “Class” objects has complex relations and I

can not remove a bug

→ Make them WBunp with WB unprotect operation

WB implementation history WB protected classes

Ruby 2.1 (2013)
Container types: Array, Hash, Struct, Object (User defined
classes), Class
Scalar types: String, Range, Regexp, RubyVM::ISeq (bytecode)

Ruby 2.4 (2016)
Proc (closure class), Env (local variables)
(postponed to impl. them at 2013 because it was difficult task)

Ruby 2.5 (2017)
Dir, Binding, Thread::Queue, Thread::SizedQueue and
Thread::ConditionVariable

Related work

• TruffleRuby introduce special wrappers to support C-
extension library[7]
• Issue: We need two GCs

• Special C-preprocessor to auto-WB insertion [5]
• Issue: False positive. Difficult to maintain.

•Using hardware memory protection to detect writing [3]
• Issue: Portability problem (difficult to maintain)

• Scan all old spaces [1]
• Issue: Scanning cost

Summary
• Now Ruby interpreter (2.6, 2018) employed advanced GCs.

• Generational GC from Ruby 2.1 (2013)
• Incremental GC from Ruby 2.2 (2014)
• Ruby 2.0 and before used naïve “M&S GC” algorithm

• Write barriers (WBs) were issue to introduce these GCs.
• To keep compatibility, we are not able to introduce WBs for 3rd party C-

extension libraries.

• Proposal: New concept: “WB unprotected object”
• Giving up WB insertion completely, but mark “WB unprotected”
• Invented at 2013 for Ruby 2.1.
• We can introduced advanced GCs with keeping compatibility.

• Our approach allows Gradual WB development.

Message to researchers

•Ruby interpreter is used by many people
and the performance is still issue.

•We (other Ruby committers and Cookpad)
can help your research on Ruby.

•Please contact us if you have interest:
ko1@atdot.net

Thank you for your attension!

mailto:ko1@atdot.net

