
Gradual Write-Barrier Insertion
into a Ruby Interpreter

Koichi Sasada
Cookpad Inc.

Japan
ko1@cookpad.com

Abstract
Ruby is a popular object-oriented programming language,
and the performance of the Ruby garbage collector (GC) di-
rectly affects the execution time of Ruby programs. Ruby 2.0
and earlier versions employed an inefficient non-generational
conservative mark-and-sweep GC. To improve this and make
it a generational collector, it is necessary to introduce write
barriers (WBs), but this requires huge modification to exist-
ing source code, including third-party C-extensions. To avoid
the need for adding WBs around legacy code, we invented a
new concept called “WB-unprotected objects”, which indi-
cates to the GC to treat such objects more conservatively. By
leveraging this design, we were able to improve the perfor-
mance of Ruby 2.1 with a generational GC and of Ruby 2.2
with an incremental GC while preserving compatibility with
existing C-extensions. Another significant advantage of this
approach is that WBs can be added gradually, which reduces
the difficulties associated with updating existing code.

CCSConcepts • Software and its engineering→Garbage
collection.

Keywords Generational garbage collection, Write-barrier,
Ruby
ACM Reference Format:
Koichi Sasada. 2019. Gradual Write-Barrier Insertion into a Ruby
Interpreter. In Proceedings of the 2019 ACM SIGPLAN International
Symposium on Memory Management (ISMM ’19), June 23, 2019,
Phoenix, AZ, USA. ACM, New York, NY, USA, 7 pages. https://doi.
org/10.1145/3315573.3329986

1 Introduction
Generational garbage collectors require write barriers (WBs)
or similar techniques to recognize reference creations from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ISMM ’19, June 23, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6722-6/19/06. . . $15.00
https://doi.org/10.1145/3315573.3329986

older generation objects (old objects) to younger generation
objects (young objects) [2, 6]. If we forget to insert even one
WB, the young objects may be wrongly collected. Of course,
this would be a critical GC bug.
If you need to implement a generational GC on an inter-

preter which does not haveWBs yet, how can you implement
it? One straightforward approach is to completely introduce
all WBs at once. However, if you cannot modify parts of the
source code writing to objects (e.g., in C-extensions), it is
not possible to add all required WBs.
This was the case for the Ruby interpreter in 2013 and

before.
The Ruby object-oriented programming language [4] is

used worldwide, especially for web application development
with the Ruby on Rails framework [11]. Ruby runs programs
by creating and mutating many objects, and thus the perfor-
mance of garbage collection affects the performance of the
interpreter. There are huge-scale web applications written
in Ruby and therefore performance is important.
The latest Ruby version is Ruby 2.6, which was released

in Dec. 2018. Ruby 2.6 has a generational and incremental
GC and employs such well-known techniques to improve
the throughput and reduce the pause time of the GC.
However, Ruby 2.0 and earlier versions of Ruby did not

use generational and incremental techniques because of the
lack of WBs. Previous Ruby interpreters employed a simple
conservative mark-and-sweep GC, and its performance was
poor. Thus, a generational GC was desired for a long time.
To introduce a generational GC, all reference write oper-

ations on objects must be detected by WBs. However, this
is difficult for Ruby because of compatibility problems. It
should be possible to introduce all necessary WBs into the
interpreter core (using virtual machines, built-in methods,
and so on written in the C language) with huge development
efforts. Nonetheless, we cannot easily modify all third-party
C-extension libraries which extend the Ruby interpreter and
are also written in the C language (See 2.2 for details). C-
extensions have been widely adopted and many Ruby li-
braries and applications rely on them.We needed to preserve
compatibility with existing C-extensions to not upset the
Ruby community. If we changed the C-extension API to use
WBs correctly to improve garbage collection, many Ruby
developers would not be able to upgrade to newer Ruby
versions because their applications would not run on them.

115

https://doi.org/10.1145/3315573.3329986
https://doi.org/10.1145/3315573.3329986
https://doi.org/10.1145/3315573.3329986

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Koichi Sasada

In summary, the issue was that we were not able to in-
troduce WBs without breaking compatibility with existing
C-extensions.

To overcome this issue, we invented a new concept called
“write-barrier unprotected objects”. All objects are catego-
rized as either write-barrier protected or unprotected. If we
write a reference (a pointer) to a WB unprotected object,
the write-operation is not detected by the GC. We extend
GC algorithms which require WBs using the “WB unpro-
tected object” concept by treating them carefully. We can
mark uncertain objects asWB unprotected objects so that we
can keep compatibility with existing C-extensions without
modifying them.
The “WB unprotected objects” concept further helps to

develop and improve an interpreter gradually. We can post-
pone insertingWBs for certain complex data structures, such
as closure objects. This advantage is important because we
only have a limited number of Ruby interpreter developers.
With this concept, we introduced generational garbage

collection in Ruby 2.1 (2013) and incremental generational
garbage collection in Ruby 2.2 (2014), and the overall perfor-
mance was improved.
The contribution of this research is proposing the new

“WB unprotected objects” concept to implement GC algo-
rithms which require WBs for an interpreter in which it is
not possible to insert WBs for all reference write operations.
Improving the performance of the Ruby interpreter is a prac-
tical contribution because many people currently use the
Ruby language. This technique is also applicable to other lan-
guages beyond Ruby which need to preserve compatibility
with existing third-party code without modifications.

Our original idea for this work was conceived in 2013
and we made several presentations about it. However, there
were no academic reports about it, so we therefore summa-
rize it in this paper now with our experience of Ruby’s GC
development.

2 Introduction on the Ruby Interpreter
This section describes the Ruby 2.0 internals[10] related to
garbage collection.

2.1 Object Representation
Basically, each object has a fixed-size memory block (size:
sizeo f (void∗) × 5, 40 bytes on a 64 bit CPU). This memory
block consists of two parts, namely a header and a body.
The header contains the class of the object, its data type and
other information about the object. The usage of the body
depends on the data type.

The Ruby interpreter handles an object with a pointer to
this memory block. We call this pointer to the memory block
as VALUE.

If an object requires more memory than the body can hold,
we use malloc() to allocate external memory blocks. For

example, if we allocate a array object with a length of 10,
the Ruby interpreter allocates a sequential memory block
(size: 10 × sizeo f (VALUE)) and the body of the array object
points to the allocated memory block.

2.2 GC Algorithm
Ruby traditionally used a simple conservative mark-and-
sweep GC algorithm. The GC marks all objects traceable
from the root set and sweeps unmarked objects. Pointer-
like numbers in machine stacks, CPU registers and similar
locations are conservatively assumed to be pointers, and
pointed objects are marked.

This simple GC algorithmmade writing C-extensions easy
because writing additional code to communicate with the
GC was not necessary in most cases.
The sweeping phase was incremental (lazy sweeping).

However, the marking phase stopped all of the Ruby execu-
tion.

2.3 Compatibility Issue
Ruby supports C-extensions, which can be built from C
language source code, to enhance the Ruby interpreter. C-
extensions are dynamic-link libraries, and the Ruby inter-
preter loads them dynamically. The Ruby interpreter pro-
vides the Ruby C-API, which is used by C-extensions.

Using C-API, we can read and write to Ruby managed
memory areas directly. For example, RARRAY_PTR(ary) API
(macro) returns an array’s memory block, and C-extensions
can write a reference (VALUE) to this memory block directly
as follows:

RARRAY_PTR(ary)[i] = obj;

We cannot detect this kind of memory access (writing)
and it is thus difficult to insert WBs correctly, especially in
third-party C-extensions that we can not modify them.

There is an alternative API rb_ary_store(ary, i, obj)
for storing obj in the ith index and it is easy to support WB
because we only need to modify rb_ary_store(). However,
we cannot force all C-extensions to use this kind of WB-
friendly API.
If we forget to insert even a single write-barrier, it will

cause critical issue (freeing of objects that are still in use).
This is why we were not able to introduce a generational GC
or other GC techniques which require WBs.

3 Proposal: WB-Unprotected Objects
To introduce a generational GC to Ruby 2.1, we invented a
new concept called “write-barrier unprotected objects”. In
addition, an incremental GC was introduced using the same
technique.

This section describes our ideas and shows how to imple-
ment these GCs.

116

Gradual Write-Barrier Insertion into a Ruby Interpreter ISMM ’19, June 23, 2019, Phoenix, AZ, USA

3.1 WB-unprotected Objects
Facing the problem that we were unable to insert WBs on all
write-locations, we gave up on complete WB insertion, and
instead explicitly indicated which objects are guaranteed by
WBs.

All objects have an attribute called “WB-protected”. If
an object is WB-unprotected, this attribute is false, which
means that the Ruby interpreter does not support WBs for
this object. Newly created references from this object to other
objects cannot be detected by a GC. References written to
WB-protected objects are detected completely.

The Ruby 2.0 interpreter does not have any WBs, and
thus all objects are WB-unprotected. If we insert WBs for
a data structure representing a class K, we can then set the
WB-protected attribute for all instances of K. For example,
String-class objects only have a few references (they usually
only refer to an Encoding object), so it is easy to implement
String objects as WB protected objects.

Thismeans thatwe can increase the number ofWB-protected
objects gradually. We can prioritise WB-insertion develop-
ment such that the more frequently used classes are assigned
a higher priority than the others. Array and Hash objects
are used frequently and have a strong impact on the per-
formance of generational GC, so we supported them with
top priority. For the classes that have a complex data struc-
ture and that present difficulties for introducing WBs, we
can postpone making them WB-protected. As for classes
with only a few instances or classes where most objects die
young, we can also postpone making them WB-protected
because the performance impact is minimal. In general, in-
serting WBs correctly is a difficult and time-consuming task
because WB-related bugs cause critical issues and it is diffi-
cult to debug them. Thus, allowing for gradual development
is beneficial.

3.2 WB Unprotect Operation
We can make Array objects WB protected because their
implementation code is maintained by us. However, as de-
scribed in the last section, C-extensions can obtain pointers
to memory objects and can write references directly. This
means that there is a possibility that some Array objects do
not support WBs.
For this case, obtaining a pointer from an array object

makes that array WB-unprotected. We call dropping the
WB-protect attribute the “WB unprotect operation”.

There are several classes other than Array that use theWB
unprotect operation such as Hash. Fortunately, C-extensions
acquire pointers from a VALUE using special macros (such as
RARRAY_PTR()), so we can insert WB unprotect operations
in these macros.
We can also use the WB unprotect operation in other

cases. For example, it is difficult to determine where WBs are
needed during a complex pointer manipulation involving

multiple objects. After the manipulation, we can give up
on keeping the WB protected attribute by performing the
WB unprotect operation. Though this may slow down the
interpreter, its health is maintained.
Objects can be changed from WB-protected objects into

WB-unprotected objects. However, WB-unprotected objects
can not become WB-protected objects.

3.3 Generational Garbage Collection with
WB-Unprotected Objects

Our original GC was a conservative mark-and-sweep (in-
cremental sweep) algorithm. We implemented generational
marking with WB-unprotected objects to enhance the orig-
inal GC. We named it RGenGC. The R prefix stands for Re-
stricted (because of WB-unprotected objects) or Ruby.
We use two generations: young objects and old objects.

There are two marking phases: minor and major marking.
Minor marking marks young objects and sweeps unmarked
young objects. Major marking marks all objects. A WB adds
an old object into the remembered set if reference creations
from the old object to young objects are detected.

Minor marking steps without WB-unprotected objects are
as follows:

1. Put the root-set objects and objects referenced from
the remembered set objects into the work queue.

2. Repeat the following until the work queue is empty:
a. Dequeue an object p from the work queue.
b. For each object c referenced from p do:

i. If p is an old object:
• If c is already marked, makes c an old object and
add c to the remembered set.

• If c is not marked and not an old object, makes
c’s age two (becomes an old object at the next
step).

ii. Increment the age of c by one, mark c , and then
put c to work queue if c was not marked and is not
an old object. Note that, in our implementation, if
the age of an object becomes 3, the object becomes
an old object.

After minor marking, unmarked young objects are swept.
Sweeping phase is not generational (all objects are scanned).
We introduced the following new rule to support WB-

unprotected objects:

Rule1 Prohibit the promotion of WB-unprotected ob-
jects. Their age is always 0, i.e. young objects.

Rule2 If the interpreter detects a reference from an old
object to a WB-unprotected object A during the mark-
ing phase, add A to the remembered set.

Rule3 If an old object B becomes a WB-unprotected
object via the WB unprotect operation, the interpreter
should make B young (demote) and put it into the
remembered set, as well.

117

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Koichi Sasada

Becausewe cannotmanage references fromWB-unprotected
objects, we introduced the aforementioned additional rules.
WB-unprotected objects added to the remembered set are
marked by default during minor marking.

3.4 Incremental Garbage Collection with
WB-Unprotected Objects

Based on RGenGC, we implemented an incremental mark-
and-sweep algorithmwithWB-unprotected objects.We named
it RIncGC. We only introduced incremental marking for ma-
jor garbage collection because minor garbage collection is
already fast enough.
Combining incremental and generational garbage collec-

tion is not difficult, so we only show the incremental marking
algorithm.
We will use the three colours (white, grey, black) to ex-

plain RIncGC. The incremental marking phase without WB-
unprotected objects consists in the following steps:

1. Make all objects white.
2. Make all objects in the root set grey.
3. Repeat the following until there are no grey objects.

These steps are interleaved with the Ruby program
execution.
a. Pickup an object (A) from the pool of grey objects.
b. Make all unmarked white objects which are referred

from A grey.
c. Make A black.

If WBs detect a reference creation from a black object to a
white object, then the white object is made grey.

After the marking phase, the white objects are swept. Our
sweeping phase was already incremental (lazy sweeping).
We introduced a new rule to support WB-unprotected

objects:
Rule4 At the end of the marking phase, the GC re-scan

black and WB unprotected objects at once (not incre-
mental).

WB-unprotected objects can refer to white living objects,
and thus Rule4 is needed. The pause time caused by this
step is proportional to the number of living WB-unprotected
objects.
Listing WB-unprotected objects is a problem. We intro-

duce a bitmap to represent the WB unprotected attribute
for each object. Each object has a corresponding bit on
the bitmap. Using this bitmap, it is easy to find all WB-
unprotected objects.

For example, 1 M objects consume 1 M bits in the bitmap
(1M/8bit = 128KB). A set of 1 M objects consumes at least
40B × 1M = 40MB, compared to which 128KB is very small.

4 Evaluation
In this section, we show the performance improvement mea-
surements and our experience on how our proposal aids in
the development.

def make_linked_list n
list = []
n.times{

list = [list]
if rand(100) < $prob

list.wb_unprotect
end

}
list

end

Create a long linked list
huge_list = make_linked_list(10_000_000)

Create 100 M empty arrays to invoke minor GC
100_000_000.times { [] }

Figure 1. Micro-benchmark program

Figure 2. Micro-benchmark results

4.1 Performance
Several benchmark results are presented in this subsection.
We used a Linux machine (CPU: Intel(R) Core(TM) i7-6700
CPU, 64GB ofmemory, Ubuntu 18.04.2, gcc 7.3.0) for this eval-
uation.We used the latest development Ruby version, namely
“ruby 2.7.0dev (2019-03-08 trunk 67194)

[
x86_64-linux

]
”. This

version of Ruby contains RGenGC and RIncGC. To evalu-
ate them, we prepare a “disabled” version by modifying this
version of Ruby to force it to use full (major) marking and
immediate (non-incremental) marking. We provided macros
USE_RGENGC and USE_RINCGC to enable or disable these fea-
tures includingWBs. However, we found that disabling these
features using these macros introduces a GC performance
bug on this version (we usually perform tests on enabled
versions). Therefore, in this evaluation, “disabled” means full
and immediate marking and the WB overhead is included
for the “disabled” version.

118

Gradual Write-Barrier Insertion into a Ruby Interpreter ISMM ’19, June 23, 2019, Phoenix, AZ, USA

Table 1. RDoc benchmark results

Total time (sec) GC time (sec)
Disabled 30.46 10.20
Enabled 22.57 1.63

4.1.1 Micro-Benchmark
Figure 1 shows our micro-benchmark program, which makes
an linked list with 10M array objects. To measure the effect
of theWB-unprotected objects, we made some arraysWB un-
protected via the wb_unprotectmethod (the wb_unprotect
method performs the WB unprotect operation, and was pre-
pared only for this evaluation). $prob specifies the percent-
age of objects that are WB-unprotected. With the linked
list, we made 100 M empty arrays to invoke multiple minor
marking operations.

Figure 2 shows the results of this program from 0% to 100%.
The rightmost data-point shows the result on a disabled GC
(no RGenGC, RIncGC, with 0% $prob).

We can see that increasing the percentage ofWB-unprotected
objects increases the overall garbage collection time. It is in-
teresting to note that the “100%” case did not yield the worst
result. There are no old objects (note that WB-unprotected
objects can not become old objects), and thus putting arrays
in the remembered set was not required.

The “disabled” result was slower than for 0%WB-unprotected
objects. We can confirm that RGenGC resulted in an improve-
ment. The “disabled” result was close to the results obtained
for 30% to 40% WB-unprotected objects. This means that
WB-unprotected objects introduce additional overhead com-
pared to the interpreter without RGenGC. To achieve a better
performance, the number of WB unprotected objects should
be small.

4.1.2 RDoc Application
RDoc is Ruby’s documentation system,which reads Ruby and
C source code and generates documentation from comments
embedded in the source code. We use RDoc workload as
non-trivial application benchmark. The target source code
in this experiment is the C and Ruby source code in the Ruby
interpreter source repository.

Table 1 shows the evaluation results.With the RDoc bench-
mark, we can confirm an overall 35% performance improve-
ment when using RGenGC. GC time was 6.25 times smaller.

In the RDoc benchmark, the Ruby interpreter process cre-
ates 32M objects, of which 0.6M areWB-unprotected objects.
There were 657 WB-unprotect operations. In this case, there
were only a few (approximately 2%) WB-unprotected objects.

Figure 3 shows the number of allocated objects, indexed
by GC events (the x-axis shows the number of GCs that
happened so far, sampled every 10 GCs). We can see that
young objects die early by comparing the numbers of living
and old objects, confirming the generational hypothesis in

Figure 3. RDoc benchmark result (# of objects alive on each
GC event)

Table 2.Maximum response times (ms) by percentile for the
Discourse Web application benchmark

50% 75% 90% 99%
categories 36 44 148 159

35 36 52 87
(×1.03) (×1.22) (×2.85) (×1.83)

home 39 148 161 164
39 42 56 96

(×1.00) (×3.52) (×2.88) (×1.71)
categories 64 179 186 194
_admin 63 70 82 147

(×1.02) (×2.56) (×2.27) (×1.32)
home_admin 71 180 186 194

67 80 86 157
(×1.06) (×2.25) (×2.16) (×1.24)

Cell contents:
top: disabled version, middle: enabled version,
bottom: improvement ratio (enabled/disabled).

this case. Because the interpreter needs to mark only young
living objects on each minor marking, the reduction in GC
time is considerable compared to a full GC. Figure 3 also
shows that the number of WB unprotected objects is really
small.

4.1.3 Web Application Benchmark
We evaluate the proposed approach on a practical web appli-
cation using the Ruby on Rails web application framework:
the Discourse benchmark1. The Discourse benchmark makes
500 requests to several pages and shows the results for dif-
ferent percentiles.
1https://github.com/discourse/discourse/. Our downloaded git commit hash
is 41f09e. The benchmark can be run by running script/bench.rb.

119

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Koichi Sasada

Table 2 shows the results on RGenGC/RIncGC disabled
and enabled Ruby interpreters. Percentile values in the table
indicate that n% of all requests finished in less than x mil-
liseconds. In each cell, the first and the second lines show
the results for the disabled version and the enabled version,
respectively, in milliseconds. The third line shows the ratio
(disabled/enabled).

Half of the requests (the 50% column) were almost same for
both the disabled and enabled versions. However, we can ob-
serve differences for 75% and higher percentiles. We believe
that we can confirm the performance impact of RGenGC. In
the results in the 99% column, we can see an improvement on
the worst time because of RIncGC. Nevertheless, the worst
time was clearly longer than the times shown in the 50%
column, so we need to improve RIncGC in future.
In this benchmark test, a total of 128 M objects were cre-

ated, of which 1.5 M were WB-unprotected objects. The
interpreter invoked the WB unprotect operation 8,301 times.
Compared with the total number of objects, the number of
WB-unprotected objects was small enough.

4.2 Gradual Development
One advantage of the “WB-unprotected object” concept is
that it allows for gradual development. We will now sum-
marise our experience to shows how gradual development
is helpful.
On Ruby 2.1 (released in 2013), we introduced WBs into

13 classes (data structures).

Container types Array, Hash, Struct, Object (User de-
fined classes), Class

Scalar types Bignum, Complex, Float, Rational,
String, Range, Regexp, RubyVM::ISeq (bytecode)

C-extensions can access (write) Array and Hash objects
directly (C-extensions can obtain a raw pointer to their mem-
ory block). We apply the WB-unprotect operation if a raw
pointer is acquired by C code.

The class Class represents Ruby’s class objects. We were
not able to eliminate a WB-related bug for some kinds of
Class objects, so we used the WB unprotect operation if a
class becomes such a kind of class to prevent this bug. This
shows that we can give up on inserting WBs if it proves to
be difficult.

Ruby 2.4 (released in 2016) introducedWB-protected Proc
objects (closure objects) and internal environment objects
(Env objects2). Env objects have complex pointer references
and it was difficult to introduce efficient WBs (we had to in-
troduce WBs for each local variable assignment made by the
virtual machine). We invented a new efficient write barrier
technique, and we managed to make Env and Proc objects

2 Env objects manage local variables on a method frame. A Proc object
refers an Env object list.

WB-protected for Ruby 2.4. Our measurements showed a per-
formance improvement of 57% on a special benchmark that
created a huge number of Proc objects3 with this change.
Ruby 2.5 (released in 2017) made five additional classes

(Dir, Binding, Thread::Queue, Thread::SizedQueue and
Thread::ConditionVariable) WB protected.

Additionally, we are maintaining compatibility with exist-
ing C-extensions and we have not received any reports on
compatibility issues about it.

5 Related Work
TruffleRuby[9] is an alternative implementation of the Ruby
language on the JVM, using the Graal dynamic compiler
and the Truffle AST interpreter framework[12]. TruffleRuby
supports MRI’s C-extensions by passing special wrapper
objects to native code and managing their lifetime beside
normal objects, using a global table[7]. We can employ a
similar approach, however using special wrapper objects in-
troduces a measurable overhead. Also, that approach would
require rewriting large parts of the interpreter code to obtain
good performance. Our approach does not require large-scale
rewriting.
Hanai et al. proposed an automatic WB insertion system

to create a Scheme interpreter[5]. They created a special C
preprocessor that detects “write” locations by analysing the
C source code and suggests the introduction of WBs. We
believe there are problems when using this approach: (1)
It is difficult to maintain a preprocessor. (2) The proposed
system cannot detect complex code patterns, such as using
void pointers. (3) The preprocessor may suggests the intro-
duction of unnecessary write barriers because it has to be
conservative. This can introduce additional overhead.
Using a hardware memory protection mechanism is an-

other approach[3] to provide write-detection without in-
troducing WBs in the source code. However, the overhead
of page faults cannot be ignored. Portability is also a prob-
lem, because we would need to use system-specific page-
protection features. This issue makes maintenance difficult.

There is also an extreme approach: scanning all old spaces
in the heap looking for references to young objects[1]. Of
course, we cannot ignore the overhead of linear scanning,
even if linear access has better locality than random access.
Additionally we cannot trace all heap memory because C-
extensions can allocate memory blocks which are not man-
aged by the GC. C-extensions can write a pointer to such
memory blocks4.

3https://bugs.ruby-lang.org/issues/10212
4 In such case, C-extensions must provide a special mark function to specify
how to mark all objects referenced from a memory block which is allocated
by C-extensions.

120

Gradual Write-Barrier Insertion into a Ruby Interpreter ISMM ’19, June 23, 2019, Phoenix, AZ, USA

6 Conclusion
We proposed the “write barrier unprotected object” concept
to introduce generational and incremental garbage collection
techniques into the Ruby interpreter, which was non-write-
barrier aware. With this concept, we succeeded in imple-
menting a generational and incremental GC on the Ruby
interpreter and improving GC performance. Using the “WB-
unprotected object” concept, we can develop write-barrier-
related code gradually on a flexible development schedule.
Via measurements we demonstrated the performance impact
of our GC improvements, mostly obtained via the genera-
tional GC.

We showed some poor GC performance results with a “dis-
abled” version in Table 2. For web applications, there used
to be a trick for disabling GC using the GC.disable method
before the request, and then re-enabling GC after the request,
in order to response the request quickly by avoiding GC dur-
ing the request (also called “out-of-band GC”). In fact, our
organization (Cookpad Inc.) used to apply this trick some
years ago to improve response times on our service. Because
RGenGC and RIncGC solved this issue significantly, our web
applications do not use GC.disable anymore, and the man-
agement of our web applications became easier. Moreover,
the overall CPU usages of our web applications were reduced.
This is important because there is need to reduce the cost of
computations. Github, one of the biggest Ruby users, also
reported same results[8].

Finally, there are other GC techniques, and we should try
to employ these advanced techniques with WB-unprotected
objects in Ruby.

Acknowledgments
First of all, we would like to thank Yukihiro Matsumoto and
other Ruby interpreter developers who helped us to imple-
ment (and debug) our new GCs. This work was started when
I was a Heroku, Inc. employee. We would like to express our
gratitude to Heroku, Inc. for their support. We also would
like to thank Yusuke Endoh, Benoit Daloze, Martin Dürst and
Samuel Williams for contributing to the editing of this paper.

Finally, we would like to thank the anonymous reviewers
and Christian Wimmer for reviewing and shepherding.

References
[1] Joel F. Bartlett. 1989. Mostly-Copying Garbage Collection picks up Gen-

erations and C++. Technical Note TN–12. DEC Western Research Lab-
oratory, Palo Alto, CA. http://www.hpl.hp.com/techreports/Compaq-
DEC/WRL-TN-12.pdf

[2] Stephen M. Blackburn and Kathryn S. McKinley. 2002. In or Out?
Putting Write Barriers in Their Place. In 3rd ACM SIGPLAN Interna-
tional Symposium on Memory Management (ACM SIGPLAN Notices
38(2 supplement)), Hans-J. Boehm and David Detlefs (Eds.). ACM Press,
Berlin, Germany, 175–184. https://doi.org/10.1145/512429.512452

[3] Hans-Juergen Boehm, Alan J. Demers, and Scott Shenker. 1991. Mostly
Parallel Garbage Collection. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (ACM SIGPLAN Notices
26(6)). ACM Press, Toronto, Canada, 157–164. https://doi.org/10.1145/
113445.113459

[4] David Flanagan and YukihiroMatsumoto. 2008. The Ruby Programming
Language (first ed.). O’Reilly.

[5] Ryo Hanai, Tsuneyasu Komiya, Masahiro Yasugi, and Taiichi Yuasa.
2003. Automatic Insertion of Write Barriers into C - based Exten-
sion Code for Scheme Systems (written in Japanese). IPSJ Journal,
Programming (PRO) 44, SIG04(PRO17) (mar 2003), 17–24.

[6] Richard Jones, Antony Hosking, and Eliot Moss. 2012. The Garbage
Collection Handbook: The Art of Automatic Memory Management. Chap-
man & Hall.

[7] Duncan MacGregor. 2019. Better support for C extensions in Truf-
fleRuby. (2019). https://aardvark179.github.io/blog/capi.html/

[8] Aaron Patterson. 2018. Performance Impact of Removing OOBGC.
(May 2018). https://github.blog/2018-05-18-removing-oobgc/

[9] Chris Seaton, Benoit Daloze, Kevin Menard, Petr Chalupa, Brandon
Fish, and Duncan MacGregor. 2019. TruffleRuby — A High Perfor-
mance Implementation of the Ruby Programming Language. (2019).
https://github.com/oracle/truffleruby

[10] P. Shaughnessy. 2013. Ruby Under aMicroscope: Learning Ruby Internals
Through Experiment. No Starch Press. https://books.google.co.jp/
books?id=P7AdAgAAQBAJ

[11] Dave Thomas, David Hansson, Leon Breedt, Mike Clark, James Duncan
Davidson, Justin Gehtland, and Andreas Schwarz. 2006. Agile Web
Development with Rails. Pragmatic Bookshelf.

[12] Andreas Wöß, Christian Wirth, Daniele Bonetta, Chris Seaton, Chris-
tian Humer, and Hanspeter Mössenböck. 2014. An Object Storage
Model for the Truffle Language Implementation Framework. In Pro-
ceedings of the 2014 International Conference on Principles and Prac-
tices of Programming on the Java Platform: Virtual Machines, Lan-
guages, and Tools (PPPJ ’14). ACM, New York, NY, USA, 133–144.
https://doi.org/10.1145/2647508.2647517

121

http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-TN-12.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-TN-12.pdf
https://doi.org/10.1145/512429.512452
https://doi.org/10.1145/113445.113459
https://doi.org/10.1145/113445.113459
https://aardvark179.github.io/blog/capi.html/
https://github.blog/2018-05-18-removing-oobgc/
https://github.com/oracle/truffleruby
https://books.google.co.jp/books?id=P7AdAgAAQBAJ
https://books.google.co.jp/books?id=P7AdAgAAQBAJ
https://doi.org/10.1145/2647508.2647517

	Abstract
	1 Introduction
	2 Introduction on the Ruby Interpreter
	2.1 Object Representation
	2.2 GC Algorithm
	2.3 Compatibility Issue

	3 Proposal: WB-Unprotected Objects
	3.1 WB-unprotected Objects
	3.2 WB Unprotect Operation
	3.3 Generational Garbage Collection with WB-Unprotected Objects
	3.4 Incremental Garbage Collection with WB-Unprotected Objects

	4 Evaluation
	4.1 Performance
	4.2 Gradual Development

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

