
Toward Ractor local GC
Koichi Sasada

STORES, Inc.

Summary

• Introducing Ractor local GC is promising but challenging
• Cross-Ractor references make this difficult

• We propose a conservative approach to enable Ractor local
GC by keeping shareable objects as root objects
• Since the number of sharable objects is small enough, it is feasible

• At least, the behavior is equivalent to the current implementation
(Global GC every time)

• We can observe significant improvements in micro-
benchmarks

Acknowledgement

• This work is a collaboration with Rohit Menon
• He is a Google Summer of Code developer in 2022

• I mentored him on the project "Optimizing Garbage Collection for Ruby
Ractors“

• Contributions
• I provided basic idea and discuss him

• Rohit continued developing his own implementation extending my idea over
3 years

• I learned from his experience and developed my implementation (this talk)

Koichi Sasada

• Ruby interpreter developer employed by
STORES, Inc. (2023~) with @mametter
• YARV (Ruby 1.9~)

• Generational/Incremental GC (Ruby 2.1~)

• Ractor (Ruby 3.0~)

• debug.gem (Ruby 3.1~)

• M:N Thread scheduler (Ruby 3.3~)

• …

• Ruby Association Director (2012~)

• An owner of @.bookstore at 2nd floor

Off-topic: Ractor::Port proposal
https://bugs.ruby-lang.org/issues/21262
• Proposal to change the Ractor API

• Introduce: Ractor::Port for communication

• Deprecate: Ractor.yield and Ractor#takd pair

• Ractor::Port is a small enhancement of the mailbox concept
in the Actor model

https://bugs.ruby-lang.org/issues/21262

Background

“Ractor” is

• Introduced in Ruby 3.0

•Designed to enable
• parallel computing on Ruby for more
performance on multi-core CPUs
• Enables faster applications

• robust concurrent programming
• Prevents bugs caused by shared mutable state

What is parallel?

• Threads of different Ractors can run in parallel
• They can utilize CPU cores on your machine

Thread A

Thread B

Thread C

Time

R1

Thread D

Thread E

R2

GVL

GVL

Ractor as an Isolated Object Space

• Each Ractor has its own isolated object space (objspace)
• Every object (obj) belongs to exactly one Ractor

• `
Ractor 1 Ractor 2

obj
obj

obj

obj

obj

Ractor as an Isolated Object Space

• Cannot access objects in other Ractors

Ractor 1 Ractor 2

obj
obj

obj

obj

obj
Can’t access
(read/write)

NG!!

“Ractor local GC”
It seems natural to run GC simultaneously
• Run Ractors in parallel

• Run GC independently in parallel in each Ractor objspace

Ractor 1 Ractor 2

obj
obj

obj

obj

obj

root
root

Ractors can share “Shareable objects”

• Shareable objects (shobj):
• Classes and Modules

• Immutable objects (frozen and only reference shareable objects)

• Special objects (Ractor objects and so on)

• Ractors can hold to shareable objects

Ractor 1 Ractor 2

obj
obj

obj

obj

obj

Shareable

OK!!

Question: How should Ractor-Local GC
handle sharable objects?
1. Ractor R1 has a shareable object (sh1)

2. Ractor R2 holds a reference to sh1

3. R1 run GC and sh1 is collected because no refenrece to sh1
(even though R2 does)

4. R2 tries to use sh1, but it has already been freed → CRASH!

R1 R2

obj
obj

sh1

obj

obj

Shareable Referenced
only by R2

Challenges

Solution (1)
Tracking references to shareable objects
• If R1 knows that sh1 is referenced by another Ractor, its GC

can take this into account and avoid collecting sh1

R1 R2

obj
obj

sh1

obj

obj

Shareable Referenced
only by R2

sh1 is referenced

Problem with Solution (1)
Tracking shareable references is Difficult

• References can be updated at any time

• All Ractors execute in parallel

→ Difficult to keep reference states accurate across Ractors

Incorrect information can introduce marking miss

• Performance concerns
• Additional overhead from tracking inter-Ractor references

• Additional memory usage

Sample scenario

1. sh1 is sent from R1 to R2 and R2 holds a reference to sh1

2. The runtime detects “sh1 is referenced”

R1 R2

sh1 obj

objsh2 Points to sh1
from R2

sh1 is referenced
info

sh3

Sample scenario

3. R2 references sh3 (because it’s reachable from sh1)
• The reference information becomes stale, but cannot be updated

immediately because no mechanism to that (or too slow)

• sh3 is marked due to outdated information (“sh1 is referenced”)

R1 R2

sh1 obj

objsh2
Points to sh3

from R2

sh1 is referenced (old)
info

sh3

Sample scenario

4. sh2 removes the references to sh3, making sh3 unreachable

5. As a result, sh3 is collected by R1’s local GC

R1 R2

sh1 obj

objsh2
Points to sh3

from R2

sh1 is referenced (old)
info

sh3

Solution (2) Global Object Space

• The current implementation uses a single “global object space”

• No per-Ractor heap: objects are managed in one shared space

• GC stop all Ractors and marks objects correctly

Accurate, but Slow

Global

sh1

sh2
sh3

obj
R1

obj
R1

obj
R1

obj
R2

obj
R2

obj
R1

R1 root R2 root

GC timeline
Solution (1) Local GC

R1

R2

Local GC Local GC

Local GC

Solution (2) Current Global GC

R1

R2

GC

Global GCPause request Global GCPause request

Only Ractor’s objects
Runs in Parallel
Difficult to implement

Easy to make
Space efficient
Slow

The Goal and the Challenge

• Goal: Introduce Local GC to improve performance
• Track only Ractor local objects

• Run Local GC in parallel, independently (like Erlang/Elixir)

• Difficult to implement with shareable objects
• Tracking shareable objects across Ractors is hard

• (This is why Ractor local GC hasn’t been introduced for years)

• Challenge: Design a safe algorithm for Ractor local GC

Proposal

Proposal: Do not collect Shareable objects

• The problem is “hard to detect liveness of shareable objects”

→ Give up detecting liveness; assume they are alive
• The number of shareable objects is limited

• A conservative but safe approach

• On Local GC, Mark local shareable objects as root objects

• Use Global GC to reclaim shareable objects correctly
• Stop all Ractors and check cross-Ractor references

• Run less frequently than the current Global GC

Shareable objects as Root objects

• Accurate

• Shareable objects that no longer reachable are never
reclaimed until Global GC

R1 R2

sh1 obj

objsh2
Points to sh3

from R2sh3

A set of shareable objects

Mark as root

Lifetime of Shareable objects

• Classes, Modules, methods and bytecode (ISeqs)
• Typically, long-lived objects

• Ractors
• Depends on applications, but most are not short-lived now

• Immutable objects (marked as shareable)
• Depends on the application

• Immutable objects assigned to constants tend to be long-lived

Few shareable objects are short-lived

→ Conservative approach is acceptable

GC timeline (proposed approach)

R1

R2

Local GC

Local GC

Only Ractor’s objects on local GC
Runs in Parallel
Easy to implement

Pause request

Global GC (infrequent)

Key insight:
Done is better than Perfect
• Solution (1) is ideal, but difficult to implement

• We’ve discussed this for 3 years but haven’t completed yet

• And we couldn’t deliver any improvements

• Proposed conservative approach may not be perfect, but it’s
likely better than the current implementation (solution (2))

• Let’s adopt a practical and effective compromise
• As long as the number of shareable objects remains small, this

approach should work well

• It can serve as a baseline for future algorithm improvements

Implementation

1. Introduce a verifier
• Shareable objects should only refer to shareable objects

• There are some exceptions though

• Implement in GC.verify_internal_consistency
• With this verifier, sharable states become correct

2. Separate Object Space per Ractor
• All Ractor has own heap
• Introduce Global Object Space as well

3. Track a set of sharable objects as roots
• A sharable object is appeared, add it to the shareable set
• Note: Sharable objects never become unshareable

4. Make a Local GC that uses the set as roots

5. Make a Global GC that rebuilds a set of sharable objects

6. Implement logic to choose between Local GC or Global GC

Techniques
• A set is implemented using arrays

• GenGC reduces the marking time, so managing with an array is efficient (and allows
marking exceptional reference (e.g. sh → unsh))

• However, if one sharable object is added, all sharable objects in the array is marked
by the write-barrier and remember-set

• To mitigate the overhead, use array list ([prev_set, sh1, sh2, …]) and only the
last array is marked at write-barrier

• Rebuilding an array during Global GC
• Creating new arrays during GC is not allowed
• So, collect sharable object references across Ractors with st_table, and rebuild the

set (as arrays) at the end of global GC

• Objects belong to the creating Ractor
• When a Ractor is created, the Ractor object belongs to the Ractor that created it.

• Marking functions should be separated into “Ractor-local” and “from outer Ractor”

• At the same time, a Thread object is also created and belongs to the creating Ractor.
• Replace the newly created Thread object in created Ractor during Ractor bootstrap

Evaluation

Benchmark setup

• Environment
• CPU

• 13th Gen Intel(R) Core(TM) i7-13700H
• 14 Cores (6 performance cores with HT), 8 efficient cores)

• Ubuntu 22.04.5 LTS
• gcc version 11.4.0 (Ubuntu 11.4.0-1ubuntu1~22.04)
• Ruby versions

• master: ruby 3.5.0dev (2025-03-17T17:19:43Z master 52f6563422) +PRISM [x86_64-linux]
• modified: this proposal is patched on top of the above version

• Microbenchmarks
• Repeats simple tasks N times

• Each Ractor perform TN tasks
• TN = N / RN, where RN is the number of Ractors
• https://gist.github.com/ko1/5e8cb732a8d8ecfe49605674c5a01193

https://gist.github.com/ko1/5e8cb732a8d8ecfe49605674c5a01193

Short lived objects
Execution time (sec)

0

0.2

0.4

0.6

0.8

0 2 4 6 8 10 12 14 16 18E
xe

c
u

ti
o
n

 t
im

e
 (

s
e
c
)

of Ractors

new (short-lived objects)

master modified

def task

 TN.times{

 ''

 }

end

Short lived objects
Speedup Ratio

0

2

4

6

0 2 4 6 8 10 12 14 16 18

S
p

e
e
d

u
p

 r
a
ti

o

of Ractors

new (short-lived objects)

master modified

def task

 TN.times{

 ''

 }

end

Long lived objects
Execution time (sec)

0

5

10

15

0 2 4 6 8 10 12 14 16 18E
xe

c
u

ti
o
n

 t
im

e
 (

s
e
c
)

of Ractors

new (long lived objects)

master modified

def task

a = []

TN.times{

a = [a]

}

end

Long lived objects
Speedup Ratio

0

2

4

6

0 2 4 6 8 10 12 14 16 18

S
p

e
e
d

u
p

 r
a
ti

o

of Ractors

new (Long-lived objects)

master modified

def task

a = []

TN.times{

a = [a]

}

end

Regexp
Execution time (sec)

0

1

2

3

0 2 4 6 8 10 12 14 16 18E
xe

c
u

ti
o
n

 t
im

e
 (

s
e
c
)

of Ractors

Regexp

master modified

def task

 str = 'hello world‘
 TN.times{

 /(h)(e)(l)(l)(o)/ =~ str

 }

end

Regexp
Speedup Ratio

0

1

2

3

0 2 4 6 8 10 12 14 16 18

S
p

e
e
d

u
p

 r
a
ti

o

of Ractors

Regexp

master modified

def task

 str = 'hello world‘
 TN.times{

 /(h)(e)(l)(l)(o)/ =~ str

 }

end

Wrap-up

Future work

• Complete implementation for Ruby 3.5 (Dec 2025)
• Hopefully, only minor issues remain
• Need to introduce a lightweight way to send an object
• Need to reduce sharable objects like callcache
• And more details chages…

• Parallel marking on the Global GC
• Enables per-Ractor heap marking in parallel, improving global GC

efficiency

• Try the ideal but difficult solution (1) for more performance
• Rohit said he might have found a good algorithm
• Let’s look forward to his future report

Summary

• Introducing Ractor local GC is promising but challenging
• Cross-Ractor references make this difficult

• We propose a conservative approach to enable Ractor local GC by
keeping shareable objects as root objects
• Since the number of sharable objects is small enough, it is feasible
• At least, the behavior is equivalent to the current implementation (Global

GC every time)

• We can observe significant improvements in micro-benchmarks

• NOTE: This work is a collaboration with Rohit Menon

Questions and feedbacks are very welcome!

Thank you for listening!

	スライド 1: Toward Ractor local GC
	スライド 2: Summary
	スライド 3: Acknowledgement
	スライド 4: Koichi Sasada
	スライド 5: Off-topic: Ractor::Port proposal https://bugs.ruby-lang.org/issues/21262
	スライド 6: Background
	スライド 7: “Ractor” is
	スライド 8: What is parallel?
	スライド 9: Ractor as an Isolated Object Space
	スライド 10: Ractor as an Isolated Object Space
	スライド 11: “Ractor local GC” It seems natural to run GC simultaneously
	スライド 12: Ractors can share “Shareable objects”
	スライド 13: Question: How should Ractor-Local GC handle sharable objects?
	スライド 14: Challenges
	スライド 15: Solution (1) Tracking references to shareable objects
	スライド 16: Problem with Solution (1) Tracking shareable references is Difficult
	スライド 17: Sample scenario
	スライド 18: Sample scenario
	スライド 19: Sample scenario
	スライド 20: Solution (2) Global Object Space
	スライド 21: GC timeline
	スライド 22: The Goal and the Challenge
	スライド 23: Proposal
	スライド 24: Proposal: Do not collect Shareable objects
	スライド 25: Shareable objects as Root objects
	スライド 26: Lifetime of Shareable objects
	スライド 27: GC timeline (proposed approach)
	スライド 28: Key insight: Done is better than Perfect
	スライド 29: Implementation
	スライド 30: Techniques
	スライド 31: Evaluation
	スライド 32: Benchmark setup
	スライド 33: Short lived objects Execution time (sec)
	スライド 34: Short lived objects Speedup Ratio
	スライド 35: Long lived objects Execution time (sec)
	スライド 36: Long lived objects Speedup Ratio
	スライド 37: Regexp Execution time (sec)
	スライド 38: Regexp Speedup Ratio
	スライド 39: Wrap-up
	スライド 40: Future work
	スライド 41: Summary

