Performance in the details:
A way to make faster Ruby

Koichi Sasada

<kol@heroku.com>

h{heroku

RailsClub 2015

A way to make faster Ruby

The only way | can find is:
Repeating a process.

A way to make faster Ruby: A process

. Observe Ruby interpreter

. Make assumption the reason of slowness
. Consider ideas to overcome

. Implement ideas

o b W N -

. Measure the result
*Bad/same performance - Goto 4, 3,2 or 1
*Good performance! - Commit it.

Koichi Sasada

A programmer from Japan

Koichi is a Programmer

* MRI committer since 2007/01

* Original YARV developer since 2004/01
* YARV: Yet Another RubyVM
* Introduced into Ruby (MRI) 1.9.0 and later

* Generational/incremental GC for 2.x

PROGRAMMING

Language

Koichi is an Employee

heroku

Koichi is a member of Heroku Matz team

Mission
Design Ruby language
and improve quality of MRI

Heroku employs three full time Ruby core developers in Japan
named “Matz team”

Heroku Matz team

@

=), Designer/director of Ruby

Matz

o %

Nobu S@¥E Quite active committer

Kol Internal Hacker

Matz
Title collector

* He has so many (job) title
* Chairman - Ruby Association
* Fellow - NaCl
e Chief architect, Ruby - Heroku
* Research institute fellow — Rakuten
* Chairman — NPO mruby Forum
* Senior researcher — Kadokawa Ascii Research Lab
* Visiting professor — Shimane University
* Honorable citizen (living) — Matsue city
* Honorable member — Nihon Ruby no Kai

* This margin is too narrow to contain

Nobu
Great Patch monster

Ruby’s bug

| > Fix Ruby

|> Break Ruby
|> And Fix Ruby

Nobu
Patch monster

na

nobu

29%
marcangye
tendéric ye
gqu
kosaki

3%ko1 akr

12%
4% 9%

Commit count of MRI

Nobu
- The Ruby Hero

Kol

EDD developer

Commit number of ko1 (last 3 years)

RubyKaigi

LN
(o]

2013

RubyConf

20

" RubyConf

2012

2013

15

Ruby 2.0

10
5
0

8/TT/€T0T

8/6/€10T
8/L/€10T
8/S/€10¢
8/€/€10¢

8/T/€10C

8/T1/210¢

8/6/T10C
8/L/TT0TC
8/s/t10¢
8/€/t10¢

8/1/710¢

8/TT/T10¢

8/6/110C
8/L/1T0T
8/S/110C
8/€/110¢

8/T/T10¢

8/TT/0T0C

Event Driven Development

EDD

Heroku Matz team and Ruby core team
Recent achievement

Ruby 2.2

Ruby 2.2
Syntax

* Symbol key of Hash literal can be quoted
{“foo-bar”: baz}

#=> {.“foo-bar” => baz}
#=> not {“foo-bar” => baz} like JSON

TRAP!!
Easy to misunderstand

(I wrote a wrong code, already...)

Ruby 2.2
Classes and Methods

* Some methods are introduces
* Kernel#titself
* String#unicode_normalize
* Method#curry
* Binding#treceiver
* Enumerablef#islice_after, slice _before
* File.birthtime
* Etc.nprocessors

Ruby 2.2
mprovements

* Improve GC
e Symbol GC
* Incremental GC

* Improved promotion algorithm
* Young objects promote after 4 GCs

* Fast keyword parameters
* Use frozen string literals if possible

Ruby 2.2
Symbol GC

before = Symbol.all_symbols.size
1 000 000.times{|i| i.to_s.to_sym} # Make 1M symbols
after = Symbol.all_symbols.size; p [before, after]

Ruby 2.1
#=>[2 378,1 002 378] # not GCed ®
Ruby 2.2

#=>[2 456, 2 456] # GCed! ©

Ruby 2.2
Symbol GC Issues history

* Ruby 2.2.0 has memory (object) leak problem
* Symbols has corresponding String objects
* Symbols are collected, but Strings are not collected! (leak)

* Ruby 2.2.1 solved this problem!!

* However, 2.2.1 also has problem (rarely you encounter BUG at the end of process
[Bug #10933] < not big issue, | want to believe)

* Ruby 2.2.2 had solved [Bug #10933]!!

 However, patch was forgot to introduce!!

* Finally, Ruby 2.2.3 solved it!!
* Please use newest version!!

Ruby 2.2
-ast keyword parameters

“Keyword parameters” introduced in Ruby 2.0 is useful, but slow!!

@ Evaluation on Ruby 2.1

g_:) 15

*g 10 x30 slower

@)

S 5

-)

é 0

Ll foob(1, 2, 3, 4,5, 6) foo_kwe6(k1: 1, k2: 2, k3: 3, k4: 4, k5: 5, k6: 6)

Repeat 10M times

Ruby 2.2
-ast keyword parameters

Ruby 2.2 optimizes method dispatch with keyword parameters

N
vl O

x14 faster!!

=
o

o U

Execution time (sec)

foo6(1, 2, 3,4, 5, 6) foo_kwe6(kl: 1, k2: 2, k3: 3, k4: 4, k5: 5, k6: 6)
Repeat 10M times

But still x2 times slower
= RUby 2.1 = RUby 2.2 compare with normal dispatch

Ruby 2.2
ncremental GC

Goal

Before |Ruby 2.1 |Incremental |Ruby 2.2
Ruby 2.1 |[RGenGC |GC Gen+IncGC

Throughput Low High High
Pause time Long Long Short Short

RGenGC from Ruby 2.1:
Micro-benchmark

3000
2500
Z 2000
£
< 1500
=
= 1000
500
0

x2.5 faster

no RGenGC

M total mark ™ total sweep

78686
16456
86576
SOv68
C1798
610€8
9¢86L
€E99L
obveEL
L¥20L
75049
198¢€9
89909
SLVLS
[4:147%
680TS
968LY
e0LvY
OLSLY
L1€BE
4%

Most of cases, FASTER ©

Le6lE
8ELBC
SPSeSe
¢s¢edd
65161
99651
€eLLlT
08S6

0.018
0.016

RGenGC from Ruby 2.1

Pause time

£8€9
vele

N
= O
9 o
o

0.008

=
=
o
o

0.002

[(s]
o
o
o
ed

29

a—

J8s) awl} asn

pause time (rgengc)

pause time (raw)
(w/o rgengc)

Several peaks ®

0 W < N o
= A A A O O
O ooog o
O o ©c o o

(0@s) awiny esn

RGenGC from Ruby 2.1

Pause time

[(s]
o
) O
o
ed

=
=
o
o

29

pause time (rgengc)

pause time (raw)

(w/o rgengc)

Short pause time ©

0.018
0.016

Ruby 2.2 Incremental GC

~
—
Q
o

J8s) awl} asn

pause time (rincgc)

pause time (rgengc)

0.008

Heroku Matz team and Ruby core team
Next target is

Ruby 2.3

Heroku Matz team and Ruby core team
Next target is

Ruby 2.3

No time to talk about it.
Please ask me later ©

Performance in the details:
A way to make faster Ruby

Ruby’s components for users

Rubv (Rail i gigantum umeris insidentes
uby (Rails) app Standing on the shoulders of giants

SO many gems

such as Rails, pry, thin, ... and so on.

Ruby interpreter

Ruby’s components
from core developer’s perspective

Bundled Gem
Libraries Libraries
Embedded

classes and methods
(Array, String, ...)

Compile

Object

vireeelic W BEVEET W e

Ruby
Bytecode

1‘ Kol’s area

Interpret on RubyVM

Basic flow to make faster Ruby

. Observe Ruby interpreter

. Make assumption the reason of slowness
. Consider ideas to overcome

. Implement ideas

o b W N -

. Measure the result
*Bad/same performance - Goto 4, 3,2 or 1

*Good performance! - Commit it.

Basic weapons to overcome issues

* Knowledge of computer science

* Computer system, Programming techniques, and many
others
* From:

» Textbook
* Academic papers
e Other implementation

* Feedback from users

Basic technique to improve performance

* Change the algorithm to reduce computation complexity
» e.g.: Selection sort (O(n”"2)) v.s. Quick sort (O(n log(n))

* Chang the data structure to improve data locality
e e.g.: “list” and “array”

 Remove redundant process
* e.g.: Using cache (utilize time locality)

* Considering trade-off
* Speed-up major cases and slow-down minor cases
e e.g.: speed-up non-exception flow (and slow-down exception cases)

* Machine dependent technique
* e.g.: Using assembler / CPU register directly

Case studies

Ruby has many

K K XK XK

Let’s play hangman game

Ruby has many

Ruby has many

F* K XK

Ruby has many

Ruby has many

Ruby has many

FUNC

Or Methods

Case study:
Optimize method dispatch

Ruby’s components
from core developer’s perspective

Bundled Gem
Libraries Libraries
Embedded

classes and methods
(Array, String, ...)

Compile

Object
management(GC)

Threading Evaluator

Ruby
Bytecode

1‘ Kol’s area

Interpret on RubyVM

Method dispatch

Example
recv.selector (argl, arg2)

*recv: receiver
eselector: method id
eargl, arg2: arguments

Method dispatch
Overview

1. Get class of ‘recv’ (" klass’)

2. Search method body’ named selector’ from “klass’
* Method is not fixed at compile time
 “Dynamic” method dispatch

3. Dispatch method with "body’

Check visibility

Check arity (expected args # and given args #)

Store PC’ and 'SP’ to continue after method returning
Build “local environment’

Set program counter

4. And continue VM execution

Lk wheE

Overview
Method search

e Search method from 'klass’ Basicobiect

1. Search method table of klass’
1. if method 'body’ is found, return "body’
2. klass’ = super class of "klass’ and repeat it
2. If no method is given, exceptional flow
* In Ruby language, 'method_missing’ will be called selector: body

Kernel

Each Class has
method table

Overview
Checking arity and visibility

* Checking arity
* Compare with given argument number and expected argument number

* Checking visibility
* In Ruby language, there are three visibilities

* can you explain each of them ?:-p
* public
* private
e protected

Overview
Building

ocal environment’

* How to maintain local variables?

— Prepare 'local variables space’ in stack
— ‘local environment’ (short "env’)

* Parameters are also in ‘env’

Method dispatch
Overview (again)

1. Get class of ‘recv’ (" klass’)

2. Search method 'body’ ‘selector’ from klass’
 Method is not fixed at compile time
* “Dynamic” method dispatch

3. Dispatch method with "body’

1. Check visibility
Check arity (expected args # and given args #)
Store PC’ and 'SP’ to continue after method returning

Build ‘local environment’ It seems very easy
5. Set program counter

W

. . o | and simple!
. And continue execution and slow...

Method dispatch

* Quiz: How many steps in Ruby’s method dispatch?
* Hint: More complex than | explained overview
(D 8 steps
(2 12 steps Answer is

(3 16 steps About @ 20 steps
@ 20 steps

Method dispatch
Ruby S case

Check caller’s arguments
1. Check splat (*args)
2. Check block (given by compile time or block parameter (&block))

2. Get class of ‘recv’ (‘klass’)

3. Search method “body’ “selector’ from “klass’
. Method is not fixed at compile time
. “Dynamic” method dispatch

4. Dispatch method with "body’
1. Check visibility
2. Check arity (expected args # and given args #) and process
Post arguments
Optional arguments
Rest argument
Keyword arguments
Block argument
3. Push new control frame
Store "PC’ and 'SP’ to continue after method returning
Store “block information’
Store “defined class’
Store bytecode info (iseq)
Store recv as self
4, Build ‘local environment’
5. Initialize local variables by "nil’
Set program counter

e wN R

vk wN R

o

5. And continue VM execution

(*) Underlined items are additonal process

Ruby’s case
Complex parameter checking

* “def foo(m1, m2, ol=..., 02=..,,

pl, p2, *rest, &block)”
*ml, m2: mandatory parameter
* 01, 02: optional parameter
* pl, p2: post parameter
* rest: rest parameter
* block: block parameter

* From Ruby 2.0, keyword parameter is supported

Method dispatch

1. CHeck caller’s arguments
1. Check splat (*args)
2. Check block (given by compile time or block parameter (&block))

2. Get class of ‘recv’ (‘klass’)

3. Search method “body’ “selector’ from “klass’
. Method is not fixed at compile time
. “Dynamic” method dispatch

4. Dispatch method with "body’
1. Check visibility
2. Check arity (expected args # and given args #) and process
Post arguments
Optional arguments
Rest argument
Keyword arguments
Block argument
3. Push new control frame
Store "PC’ and 'SP’ to continue after method returning
Store “block information’
Store “defined class’
Store bytecode info (iseq)

e wN R

Complex

vk wN R

and
Store recv as self
4, Build “local environment’ SIOW ! ! !

5. Initialize local variables by “nil’
Set program counter

o

5. And continue VM execution

Method dispatch
Overhead

Fib

OS: Linux 2.6.31 32-bit

Method dispatch overhead is big
especially on micro-benchmarks ©

Pentomino

Others

NotRuby

CPU: IntelCore2Quad 2.66GHz ruby 1.9.3dev (2010-05-26)
Mem: 4GB
ng)nmpiler: GCC 4.4.1,-03 Profiled by Mr. Shiba

Profiled by Oprofile

Speedup technigues
for method dispatch

Specialized instructions
Method caching
Caching checking results

B W

Special path for send’ and ‘'method_missing’

Optimization
Specialized instruction (from Ruby 1.9.0)

* Make special VM instruction for several methods

.+) W, *//1

def opt_plus(recv, obj)
if recv.is_a(Fixnum) and obij.is_a(Fixnum) and
Fixnum#+ is not redefined
return Fixnum.plus(recv, obj)
else
return recv.send(:+, obj) # not prepared
end
end

Optimization
Method caching (from Ruby 1.9.0)

e Eliminate method search overhead
e Reuse search result BasicObject
* Invalidate cache entry with VM stat

* Two level method caching Kernel

* Inline method caching
* Global method caching

method search class, id => body
N

class, id => body

CIaSS => . 0000 miss
return bOdy fill fill

Inline cache Global cache naive search
1 element per call-site hash table

Optimization
Caching checking results (from 2.0.0)

* |dea: Visibility and arity check can be skipped after first checking
 Store result in inline method cache

1. Check caller’s arguments

ﬁ 2. Search method body’ ‘selector’ from “klass’
£

3. Dispatch method with "body’

1. Check visibility and arity
1. Cache result into inline method cache

2. Push new control frame

rs

Second time

3. Build 'local environment’
4. Initialize local variables by nil’

Evaluation result

Micro benchmarks

Faster than first date

2

—&—vm1_attr_ivar*

——vm1_attr_ivar_set*
—a—vm1_block*

—8—vm1l_simplereturn*

—+—vm1_yield*

vm2_defined_method*

vm2_method*

vm2_method_missing*

O R 5 —#—vm2_method_with_block*
—&—vm2_poly_method*
vm2_send*
O vm2_super*
T T T T T T T T T T T T T T T T T T 1
v » Q % D N » %) © v v) © S N Q) A v vm2_zsuper*
A A o N %) %) o A A 53 0) S N % oA “ A % 0 -Z5up
N N % v % % vV v % Vv V \> %) > > > > > %)
A M A AME A AN M AL AAE AL AL AR A S AN A AN AN A 4
:3), :\?,/ 5(:,/ ,,\@)/ :\:\/ ,,3;/ ',\c,a/ ﬂ'Q/ :»Q/ ,,{'1,/ :{},/ f\/b‘/ n'b‘/ ﬁio)/ ﬂ”\/ ,'f'b/ :\9/ ?)Q/ ?)'\./
A S S S AR SR AN S A AR A S SN S S A
U AN A A AN AN A A AN RIS A AN AN A A AN AN AN
’\9 v v % v v % v v % % v % v v % v v %

trunk 2012/10/13 trunk 2012/10/31

Case study
Faster keyword parameters

Keyword parameters from Ruby 2.0

def with keywords
def foo(a, b, keyl: 1, key2: 2)

end
call with keywords
foo(l, 2, keyl: 123, key2: 450)

Slow keyword parameters

@ Evaluation on Ruby 2.1

7;_:7 e x30 slower

+ 10

C

O 5

-

8 0

§J<) foob(1, 2, 3, 4,5, 6) foo_kweo(kl1: 1, k2: 2, k3: 3, k4: 4,
Ll k5: 5, k6: 6)

Repeat 10M times

Why slow, compare with normal parameters?

1. Hash creation
2. Hash access

def foo(kl: vl, k2: v2) = h.fetch(:kl, vl)
" h.fetch(:k2, v2)
d =

cn 2. Hash access

foo(kl: 1, k2: 2) end

foo({kl: 1, kZ2: 2})

1. Hash creation

Optimization technique of keyword
parameters from Ruby 2.2

e Key technique
— Pass “a keyword list”
nstead of a Hash object

Check “Evolution of Keyword parameters” at Rubyconf portugal'l5
http://www.atdot.net/~ko1l/activities/2015 RubyConfPortgual.pdf

http://www.atdot.net/~ko1/activities/2015_RubyConfPortgual.pdf

Result: Fast keyword parameters (Ruby 2.2.0)

Ruby 2.2 optimizes method dispatch with keyword parameters

Aig x14 faster!!

é 10 (best case)

S 5

‘§ :

L% foo6(1, 2, 3, 4, 5, 6) foo_kwe(k1: 1, k2: 2, k3: 3, k4: 4, k5:
5, k6: 6)

Repeat 10M times

B Ruby 2.1 mRuby 2.2

But still x2 times slower
compare with normal dispatch

Case study
Garbage collection

Ruby’s components
from core developer’s perspective

Bundled Gem
Libraries Libraries
Embedded

classes and methods
(Array, String, ...)

Compile

Object
management(GC)

Threading Evaluator

Ruby
Bytecode

1‘ Kol’s area

Interpret on RubyVM

Automatic memory management
Basic concept

* Garbage collector recycled “unused” objects automatically

Mark & Sweep algorithm

Root objects

1. Mark reachable
objects from root
objects

marked

2. Sweep unmarked
- objects (collection
marked marked and de-allocation)

traverse

traverse
Collect unreachable

objects

marked marked :

Generational GC (GenGC) from Ruby 2.1.0

* Weak generational hypothesis:
“Most objects die young”

Die Young!

Take a break

IWW - a Uni

http://www.flickr.com/photos/ell-r-brown/5026593710

- Concentrate reclamation effort
only on the young objects

Generational hypothesis

Object lifetime in RDoc
(How many GCs surviving?)

“ 95% of objects dead by the first GC

10

Percentage of dead object#

0

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102

Lifetime (Survibing GC count)

Generational GC (GenGC(C)

*Separate young generation and old generation
* Create objects as young generation
* Promote to old generation after surviving n-th GC

* Usually, GC on young space (minor GC)
*GC on both spaces if no memory (major/full GC)

GenGC [Minor M&S GC] (1/2)

15t MinorGC Root obiect * Mark reachable objects from
| OOt Objects root objects.

 Mark and promote to old

generation
@ e Stop traversing after old

traverse

objects
collect -> Reduce mark overhead

e Sweep not (marked or old)

objects
traverse
e Can’t collect Some
free unreachable objects

Don’t collect old object
even if it is unreachable.

GenGC [Minor M&S GC] (2/2)

2n MinorGC Root obiect * Mark reachable objects from
| 00t ODJECLS root objects.

 Mark and promote to old

generation
@ e Stop traversing after old

traverse

objects
ignore

collect —> Reduce mark overhead

e Sweep not (marked or old)

objects
ighore
* Can’t collect Some
free unreachable objects

Don’t collect old object
even if it is unreachable.

GenGC [Major M&S G(C]

e Normal M&S

* Mark reachable objects from

root objects
@ ¢ Mark and promote to old gen

* Sweep unmarked objects

Root objects

traverse traverse
collect

* Sweep all unreachable
(unused) objects

traverse

RGenGC from Ru
Performance eva

Accumulated execution time (sec)
e
o N B

o N B OO

oy 2.1.0
uation (RDoc)

About x15 speedup!

Total mark time (ms) Total sweep time (sec)

B w/o RGenGC ™M RGenGC
* Disabled lazy sweep to measure correctly.

RGenGC from Ruby 2.1.0
Performance evaluation (RDoc)

[N
D
o

16.04393815

N
o

4.946003494

=
0 O
o O

N D
o O

Total execution time (sec)
(@)}
o

o

w/o RGenGC RGenGC
M other than GC m GC

* 12% improvements compare with w/ and w/o RGenGC
* Disabled lazy sweep to measure correctly.

summary

Ssummary
Repeating “Basic flow” is my daily job

1.
. Make assumption the reason of slowness

o b W N

Observe Ruby interpreter

. Consider ideas to overcome
. Implement ideas
. Measure the result

*Bad/same performance - Goto 4, 3,2 or 1
*Good performance! - Commit it.

Ssummary

Ruby/MRI is getting
better and better.

Thank you for your attention

Koichi Sasada

<kol@heroku.com>

— e

h| heroku i

