IT D Ruby MDATE!)EIE

Recent Ruby’s memory management

Koichi Sasada

kol@heroku.com

heroku

K.Sasada: LD Ruby M AEEIE, 2014

Summary

* Ruby’s new two GC implementation
* RGenGC: Restricted Generational GC
* RincGC: Restricted incremental GC

Who am | 7
Koichi Sasada from Heroku, Inc.

* CRuby/MRI committer Ruby
* Virtual machine (YARV) from Ruby 1.9
* YARV development since 2004/1/1 Lg{ﬁgﬁggé

e Recently, improving GC performance

* Matz team at Heroku, Inc. (3=
* Full-time CRuby developer herOI'(U

* Working in Japan

* Director of Ruby Association 2 Ruby Association

K.Sasada: LD Ruby M AEEIE, 2014

{7 Ruby Association

* Foundation to encourage Ruby developments and
communities
* Chairman is Matz
* Located at Matsue-city, Shimane, Japan

* Activities
* Maintenance of Ruby (Cruby) interpreter

* Now, it is for Ruby 1.9.3
* Ruby 2.0.0 in the future?

Events, especially RubyWorld Conference
Ruby Prize

Grant project. We have selected 3 proposals in 2013
* Win32Utils Support, Conductor, Smalruby - smalruby-editor
* We will make this grant 2014!!

Donation for Ruby developments and communities

K.Sasada: LD Ruby M AEEIE, 2014

g/

heroku

* Heroku, Inc. http://www.heroku.com

* Heroku supports Ruby development
* Many talents for Ruby, and also other languages
* Heroku employs 3 Ruby interpreter core developers

* Matz
* Nobu
Kol (me)

* We name our group “Matz team”

K.Sasada: LD Ruby M AEEIE, 2014

http://www.heroku.com/

“Matz team” in Heroku

Matz team in Heroku
In Japan

"y,

Nobu @ Tochigi
Patch monster

BES

= L“DO o Bﬂolh
\ézgﬂ A5l g 4 —
, © pox
" 2 o=l
% E%8 .
Ma.tz @ Shimane kol @ Tokyo
T|t|e COI IeCtor K.Sasada: LM Ruby M AE!)EH, 2014

EDD developer

Mission of Matz team

* Improve quality of next version of CRuby
* Matz decides a spec finally
* Nobu fixed huge number of bugs
* Kol improves the performance

Current target is Ruby 2.2!!

Now, Ruby 2.1 is old version for us.

http://www.flickr.com/photos/loginesta/5266114104

Ruby 2.1
Current stable

K.Sasada: 3L Ruby D AE!) EIE, 2014

Ruby 2.1
a bit old Ruby

* Ruby 2.1.0 was released at 2013/12/25

e New features
 Performance improvements

* Ruby 2.1.1 was released at 2014/02/24

* Includes many bug fixes found after 2.1.0 release

* Introduce a new GC tuning parameter to change
generational GC behavior (introduce it later)

* Ruby 2.1.2 was released at 2014/05/09

* Solves critical bugs (OpenSSL and so on)

Performance improvements

e Optimize “string literal”.freeze
* Sophisticated inline method cache
* Introducing Generational GC: RGenGC

Next version

Ruby 2.2
Big features (planned)

* New syntax: not available now

* New method: no notable methods available
now

e Libraries:

* Minitest and test/unit will be removed (provided by
bundled gem)

Ruby 2.2
nternal changes

* Internal
e CAPIs

* Hide internal structures for Hash, Struct and so on
e Remove obsolete APIs

* GC

 Symbol GC (merged recently)

* 2age promotion strategy for RGenGC

* Incremental GC to reduce major GC pause time
* VM

* More sophisticated method cache

http://w:flickr.com/photo/okyoey/842265722

Break

K.Sasada: 3L Ruby D AE!) EIE, 2014

Garbage collection
The automatic memory management

Automatic memory management
Basic concept

* “Object.new” allocate a new object
* “foo” (string literal) also allocate a new object
* Everything are objects in Ruby!

* We don’t need to “de-allocate” objects manually

Automatic memory management
Basic concept

* Garbage collector recycled “unused” objects
automatically

K.Sasada: 3L Ruby D AE!) EIE, 2014

Ruby’s GC

* Mark & Sweep (from first release)

e Conservative marking (from first release)

* Lazy (incremental) sweep (from Ruby 1.9.3)

* Bitmap marking (from Ruby 2.0)

* Generational marking (RGenGC, from Ruby 2.1)
* Incremental marking (PLANNED: from Ruby 2.2)

RGenGC: Restricted
Generational GC

WARNING! WARNING! WARNING! WARNING! WARNING!

Fast Workers

Die Young!
Take a break

ricors

IWW - a Union for ALL Weorksr==

http://www.flickr.com/photos/ell-r-brown/5026593710

K.Sasada: LD Ruby M AEEIE, 2014

RGenGC: Summary

e RGenGC: Restricted Generational GC

* New generational GC algorithm allows mixing “Write-
barrier protected objects” and “WB unprotected objects”

* No (mostly) compatibility issue with C-exts

* Inserting WBs gradually

* We can concentrate WB insertion efforts for major objects
and major methods

* Now, Array, String, Hash, Object, Numeric objects are WB
protected

* Array, Hash, Object, String objects are very popular in Ruby

* Array objects using RARRAY_PTR() change to WB unprotected

objects (called as WB-unprotected objects), so existing codes still
works.

RGenGC: Background
Current CRuby’s GC

* Mark & Sweep
* Conservative
* Lazy sweep
* Bitmap marking
* Non-recursive marking

e C-friendly strategy

* Don’t need magical macros in C source codes
* Many many C-extensions under this strategy

RGenGC
Restriction of CRuby’s GC

1. Because of “C-friendly” strategy:
* We can’t know object relation changing timing

* We can’t use “Moving GC algorithm” (such as
copying/compacting)

2. Because of “Object data structure”:
* We can’t measure exact memory consumption

e Based on assumption: “malloc” library may be
smarter than our hack

* We rely on “malloc” library for memory allocations
e GConly manage “object” allocation/deallocation

RGenGC: Background
Mark & Sweep

Root objects

1. Mark reachable
objects from root
objects

marked

2. Sweep unmarked
objects (collection
m— marked and de-allocation)

traverse

traverse

traverse
Collect unreachable

objects

marked marked :

K.Sasada: LM Ruby M AE!)EH, 2014

RGenGC: Background
Generational GC (GenGC)

* Weak generational hypothesis:
“Most objects die young”

Dle Young'
Take a break

http://www.flickr.com/photos/ell-r-brown/5026593710

- Concentrate reclamation effort
only on the young objects

K.Sasada: LD Ruby M AEEIE, 2014

RGenGC: Background
Generational hypothesis

Object lifetime in RDoc
(How many GCs surviving?)

95% of objects dead by the first GC

10

Percentage of dead object#

0
0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102

Lifetime (Survibing GC count)

K.Sasada: LD Ruby M AEEIE, 2014

RGenGC: Background
Generational hypothesis

Object lifetime in RDoc
(How many GCs survive?)

100
90

20 Some type of objects (like Class)

70

- has long lifetime

50
40
30
20
10
0 m I

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102

Lifetime (Survibing GC count)

Percentage of dead object#

——T OBJECT =——T CLASS =T MODULE=——T STRING ——T REGEXP
——T ARRAY =——T HASH =T STRUCT =——T _BIGNUM =——T_FILE
——T DATA ——T MATCH ——T NODE ~——T_ICLASS

K.Sasada: Ex¥T M Ruby D AE!EIE, 2014

RGenGC: Background
Generational GC (GenGC(C)

e Separate young generation and old generation
* Create objects as young generation
* Promote to old generation after surviving n-th GC
* In CRuby, n == 1 (after 1 GC, objects become old)

e Usually, GC on young space (minor GC)
* GC on both spaces if no memory (major/full GC)

RGenGC: Background
Generational GC (GenGC(C)

* Minor GC and Major GC can use different GC
algorithm
* Popular combination is:
Minor GC: Copy GC, Major GC: M&S
* On the CRuby, we choose:
Minor GC: M&S, Major GC: M&S

e Because of CRuby’s restriction (we can’t use moving
algorithm)

Minor M&S GC

15t MinorGC .
| Root objects

traverse

old/
free

collect

RGenGC: Background: GenGC

* Mark reachable objects from
root objects.

 Mark and promote to old
generation

e Stop traversing after old
objects

- Reduce mark overhead

e Sweep not (marked or old)
objects

e Can’t collect Some
unreachable objects

Don’t collect old object

even if it isunreach

Iel. w1 oh1

Minor M&S GC

2" MinorGC .
| Root objects

traverse

ignore

old/
free

ignore @

collect

RGenGC: Background: GenGC

* Mark reachable objects from
root objects.

 Mark and promote to old
generation

e Stop traversing after old
objects

- Reduce mark overhead

e Sweep not (marked or old)
objects

e Can’t collect Some
unreachable objects

Don’t collect old object

even if it isgup each

Iel. w1 oh1

RGenGC: Background: GenGC
Major M&S GC]

Root objects

e Normal M&S

* Mark reachable objects from

root objects
@ Mark and promote to old gen

* Sweep unmarked objects

traverse traverse
collect

 Sweep all unreachable
(unused) objects

traverse

old/
free

collect

K.Sasada: LM Ruby M AE!)EH, 2014

RGenGC: Background: GenGC

Problem: mark miss
* Old objects refer young objects

Root objects
— lgnore traversal of old object

traverse .
-> Minor GC causes

Q marking leak!!
traverse

* Because minor GCignores

Q referenced objects by old
. _ objects
ignore ignore

Can’t mark new object!

Q Q ignore -> Sweeping living object!
Q Q (Critical BUG)

RGenGC: Background: GenGC

ntroduce

Remem

Root objects

Remember
set (RSet)

traverse

traverse

Remember

ner set (Rset)

1. Detect creation of an
[old->new] type
reference

2. Add an [old object] into
Remember set (RSet) if
an old object refer new
objects

K.Sasada: 3L Ruby D AE!) EIE, 2014

RGenGC: Background: GenGC
‘Minor M&S GC] w/ RSet

Remember

Root objects set (RSet)

1. Mark reachable
objects from root
objects

collect * Remembered objects are

also root objects

ignore traverse
2. Sweep not (marked or
old) objects

traverse

traverse

traverse

Sasada: FxiI D Ruby M AEEHE, 2014

RGenGC: Background: GenGC
Write barrier

* To detect [old—>new] type references, we need to
insert “Write-barrier” into interpreter for all
“Write” operation

. S

“Write barrier”
[Old->New] type reference
Detected!

K.Sasada: LM Ruby M AE!)EH, 2014

RGenGC
Back to Ruby’s specific issue

RGenGC: CRuby’s case
Write barriers in Ruby

* Write barrier (WB) example in Ruby world
* (Ruby) old_ary[0] = newO # [old_ary = newO]
* (Ruby) old_obj.foo = new1l # [old_obj - newl]

old_ary old_obj

K.Sasada: LM Ruby M AE!)EH, 2014

RGenGC: CRuby's case

Difficulty of inserting write barriers

* To introduce generational garbage collector, WBs are
necessary to detect [old—>new] type reference

e “Write-barrier miss” causes terrible failure
1. WB miss
2. Remember-set registration miss
3. (minor GC) marking-miss
4. Collect live object - Terrible GC BUG!!

RGenGC: Problem
Inserting WBs into C-extensions (C-exts)

 All of C-extensions need perfect Write-barriers
e C-exts manipulate objects with Ruby’s C API
* C-level WBs are needed

* Problem: How to insert WBs into C-exts?

* There are many WB required programs in C-exts
* Example (C): RARRAY_PTR(old0)[0] = new1
* Ruby C-API doesn’t require WB before

* CRuby interpreter itself also uses C-APlIs

e How to deal with?

* We can rewrite all of source code of CRuby interpreter to add WB,
with huge debugging effort!!

* We can’t rewrite all of C-exts which are written by 3™ party

RGenGC: Problem
Inserting WBs into C-extensions (C-exts)

Two options

Performance | Compatibility 2.0and
earlier
. Good conservative
1 Give up GenGC Poor o ekl choice
GenGC with re- Most of C-exts
2 . Good)
writing all of C exts doesn’t work

Trade-off of Speed and Compatibility

K.Sasada: 3L Ruby D AE!) EIE, 2014

RGenGC: Challenge

* Trade-off of Speed and Compatibility

* Can we achieve both speed-up w/ GenGC and keeping
compatibility?

* Several possible approaches

e Separate heaps into the WB world and non-WB world
* Need to re-write whole of Ruby interpreter
* Need huge development effort
* WB auto-insertion
* Modify C-compiler
* Need huge development effort

RGenGC: Our approach

* Create new generational GC algorithm permits WB
protected objects AND WB un-protected object in

the same heap

RGenGC: Restricted Generational
Garbage Collection

RGenGC: Invent 3™ option
|| Performance | Compatibility _

Good

1 Give up GenGC Poor o ekl
GenGC with re- Good Most of C-exts
writing all of C codes doesn’t work

Ruby 2.1

3 Use new RGenGC choice
works!!

Most of C-exts

Breaking the trade off. You can praise us!!

K.Sasada: 3L Ruby D AE!) EIE, 2014

RGenGC:
Key idea

* Introduce WB unprotected objects

RGenGC:
Key Idea

e Separate objects into two types
* WB protected objects
 WB unprotected objects

* We are not sure that a WB unprotected objects
point to new objects or not

* Decide this type at creation time
e A class care about WB - WB protected object

* Aclass don’t care about WB - WB unprotected
object

K.Sasada: LD Ruby M AEEIE, 2014

RGenGC:
Key Idea

* Normal objects can be
changed to WB unprotected VM

objects Create
* “WB unprotect operation”
e C-exts which don’t care about Unprotect

WB, objects will be WB

unprotected objects WB p.
 Example obj
e ptr = RARRAY_PTR(ary) e
* In this case, we can’t insert WB ><

for ptr operation, so VM shade

“ary” Now, WB unprotected object

can’t change into WB p. object

K.Sasada: 3L Ruby D AE!) EIE, 2014

RGenGC
Key Idea: Rule

* Treat “WB unprotected objects” correctly
e At Marking
1. Don’t promote WB unprotected objects to old objects

2. Remember WB unprotected objects pointed from old
objects

* At WB unprotect operation for old WB protected objects
1. Demote objects
2. Remember this unprotected objects

RGenGC
‘Minor M&S GC w/WB unp. objects]

15t MinorGC
Root objects

Remember ¢ Mark reachable objects
set (RSet) from root objects

* Mark WB unprotected
remember objects, and *don’t

promote* them to old gen
collect objects

@ * If WB unprotected objects
‘ﬁ pointed from old objects,

then remember this WB
unprotected objects by
RSet.

— Mark WB unprotected
objects every minor GC!!

traverse traverses mark and
remember

traverse

Wo: ST Ruby D AT EIE, 2014

RGenGC

2nd MinorGC

Remember

Root ObjeCtS set (RSet)

/ collect
ignore

ignore traverse

traverse
traverse

Minor M&S GC w/WB unp. objects]

* Mark reachable objects
from root objects
 Mark WB unprotected
objects, and *don’t
promote* them to old gen
objects

@ * If WB unprotected objects
‘ﬁ pointed from old objects,

then remember this WB
unprotected objects by
RSet.

— Mark WB unprotected
objects every minor GC!!

B: 510D Ruby M AE!EHE 2014

RGenGC
Unprotect operation]

Remember | ¢ Anytime Object can give up to
set (RSet) keep write barriers

— [Unprotect operation]

* Change old WB protected objects
to WB unprotected objects
 Example: RARRAY_PTR(ary)
(1) Demote object (old - new)
(2) Register it to Remember Set

K.Sasada: 3L Ruby D AE!) EIE, 2014

RGenGC
Timing chart
2.0.0 GC (M&S w/lazy sweep)

Sweep Sweep Sweep Sweep Sweep

Ruby a Mark a a

<€ >
Stop the (Ruby)

World

w/RGenGC (Minor GC)
Mark,

Ruby a a

p Sweep Sweep Sweep Sweep

e Shorter mark time (good)

(Ruby)
World e Same sweep time (not good)

* (little) Longer execution time b/c WB (bad)

K.Sasada: LD Ruby M AEEIE, 2014

RGenGC
Number of objects

2.0.0 GC (M&S)

of Living objects # of Freed objects

&>

w/RGenGC (Minor GC)

E # of Living objects E E # of Freed objects ;
of old (c) # of new # of freed (a) # of unused promoted objects
objects objects (#new) but remembered (b) # of unused WB unp. objects
(#old) objects pointed by old

(c) # of WB unp. objects

RGenGC
Number of objects

w/RGenGC (Minor GC)

of old
object
(#old)

of Living objects

D> <>

(c)

>

(a) (b)
3 & > o

of

—

of new

<>

of freed

Freed object

(a) # of unused promoted objects

object (#new) but remembered | (b) # of unused WB unp. objects

objects

pointed by old
(c) # of WB unp. objects

Marking space Number of unused, | Sweeping
uncollected objs space

Mark&Swep GC # of Living objects
Traditional GenGC #new + (a)
RGenGC #new + (a) + (b) + (c)

Full heap
(a) #new
(a) + (b) Full heap

K.Sasada: LM Ruby M AE!)EH, 2014

RGenGC

Discussion: Pros. and Cons.
* Pros.

* Allow WB unprotected objects

* 100% compatible w/ existing extensions which don’t care
about WB

* A part of CRuby interpreter which doesn’t care about WB
* Inserting WBs step by step, and increase
performance gradually

* We don’t need to insert all WBs into interpreter core at a
time

* We can concentrate into popular (effective)
classes/methods.

* We can ignore minor classes/methods.

* Simple algorithm, easy to develop

RGenGC
Discussion: Pros. and Cons.

* Cons.

* Increasing “unused, but not collected objects until full/major GC
« Remembered normal objects (caused by traditional GenGC algorithm)
« Remembered WB unprotected objects (caused by RGenGC algorithm)
 WB insertion bugs (GC development issue)

* WB protected objects need correct/perfect WBs. However, inserting
correct/perfect WBs is difficult.

* This issue is out of scope. We have another idea against this problem
(out of scope).

e Can’t reduce Sweeping time

* But many (and easy) well-known techniques to reduce sweeping time
(out of scope).

* Increase complexity
e Additional tuning parameters

RGenGC
Performance evaluation

* |deal micro-benchmark for RGenGC
* Create many old objects at first
* Many new objects (many minor GC, no major GC)

* RDoc

e Same “make doc” task from trunk

RGenGC
Performance evaluation (micro)

* Shorter mark time (good)

500000000 — ° Same Sweep time (nOt gOOd)_
E 400000000
> ——mark (RGENGC)
_g 300000000 —=—sweep (RGENGC)
.§ R mark
b [/ \N,’ - ___»\'/"—'\YJ‘Y!-;;—Q’\; — sweep
Good mark \\

time © Same sweep

1 2 3 4 5 6 7 8 9 10 11 12 gclciuljtﬁ 17 18 19 20 21 22 23 tlme @

K.Sasada: 3L Ruby D AE!) EIE, 2014

RGenGC
Performance evaluation (RDoc)

Compare with M&S and RGenGC
250

Major/full

GC peaks

ms)

ms

—sweep (ms)

Faster minor

—rgengc/mark (ms)

rgengc/sweep (ms)

GC count

* Disabled lazy sweep to measure correctly.
K.Sasada: Ex¥T M Ruby D AE!EIE, 2014

RGenGC
Performance evaluation (RDoc)

e SN TN
o N b

About x15 speedup!

Total mark time (ms) Total sweep time (sec)
B w/o RGenGC ™M RGenGC

* Disabled lazy sweep to measure correctly.
K.Sasada: Ex¥T M Ruby D AE!EIE, 2014

Accumulated execution time (sec)

o N B~ OO O

RGenGC
Performance evaluation (RDoc)

140

[HY
N
o

100

(00)
o

N D
o O

Total execution time (sec)
(@)
o

o

w/0o RGenGC RGenGC
MW other than GC m GC

K.Sasada: Ex¥T M Ruby D AE!EIE, 2014

RGenGC: Summary

e RGenGC: Restricted Generational GC

* New GC algorithm allow mixing “Write-barrier protected
objects” and “WB unprotected objects”

e (mostly) No compatibility issue with C-exts

* Inserting WBs gradually

* We can concentrate WB insertion efforts for major objects
and major methods

RincGC;
Restricted incremental GC

RincGC
Background and motivation

* Ruby 2.1 had introduced generational GC
e Short marking time on minor GC
* Improve application throughput

* Still long pause time on major GC
* Long pause time affects user response time

Proposal:
RincGC: Incremental GC for major GC

* Introducing incremental GC to reduce pause time
* Can combine with Generational GC

_ Generational GC Incremental GC Gen+Inc GC

Throughput High Low (a bit slow) High
Pause time Long Short Small

K.Sasada: LM Ruby M AE!)EH, 2014

RiNcGC: Base idea
ncremental GC algorithm

Move forward GC processes incrementally
e Mark slots incrementally
* Sweep slots incrementally

Incremental marking in 3 phase
* (1) Mark roots (pause)
* (2) Mark objects reachable from roots (incremental)
* (3) Mark roots again, and mark remembered objects (pause)

Mark objects with three state (white/grey/black)
* White: Untouched objects
* Grey: Marked, and prepare to mark directly reachable objects
* Black: Marked, and all directly reachable objects are marked

Use write barriers to avoid marking miss from marked objects to live
objects

* Detect new reference from black objects to white objects

* Remember such source black objects (marked at above (3))

RINcGC:
ncremental GC for CRuby/MRI

* Incremental marking
* (1) mark roots (gc_mark_roots())
* (2) Do incremental mark at rb_newobj_of()
* (3) Make sure write barrier with WB-protected objects
* (4) Take care of WB-unprotected objects (MRI specific)

* Incremental sweeping
* Modify current lazy sweep implementation

RINCGC:
ncremental marking

* (1) mark roots (gc_mark_roots())
* Push all root objects onto “mark_stack”

* (2) Do incremental mark at rb_newobj_of()
* Fall back incremental marking process periodically
e Consume (pop) some objects from “mark_stack” and make
forward incremental marking
* (3) Make sure write barrier with WB-protected objects
 Mark and push pointed object onto “mark_stack”

 (4) Take care of WB-unprotected objects (MRI specific)

e After incremental marking (“mark_stack” is empty), re-scan
all roots and all living non-WB-protected objects

 WB-unprotected objects are represented by bitmap
(WB_UNPROTECTED_BITS)

RINcGC:
ncremental marking

def mark(obj) def finish_marking

return if obj.mark_bit root_objects{|o| mark(o)} # re-scan root objects

obj.mark_bit=true return false unless mark_stack.empty?

obj.marking_bit = true Smarked_wb_unprotected_objects.each{|unprotected_obj|

Smark_stack.push(obi) unprotected_obj.reachable_objects{|o| mark(o)}

end

}

mark(obj) while obj = Smark_stack.pop

def start_marking

GC.state = :mark
GC.state = :sweep
Sroot_objects{|o| mark(o)}

return true
end

end

def incremental_mark(n)

X def write_barrier(a, b)
n.times{

i == i 1 i i | i
returnif $mark_stack.empty? & finish_marking if GC.state == :mark && a.mark_bit && !a.marking_bit && !b.mark_bit

obj = mark_stack.pop a.marking_bit = true
reachable_objects_from(obj){|o| mark(o)} mark(b) and Smark.stack.push(b)
obj.marking_bit = false end

} end

end

K.Sasada: LD Ruby M AEEIE, 2014

RiINcGC:
ncremental marking

Traditional GC coloring
terminology mark_bit marking_bit

White FALS FALSE
Grey TRUE TRUE
Black TRUE FALSE

K.Sasada: Ex¥T M Ruby D AE!EIE, 2014

RINcGC:
ncremental sweeping

e Current implementation

* |terate until no pages
* Sweep 1 page (a set of slots)
* Consume 1 page

e After that, no empty pages

* Modify implementation

* |terate
* Sweep 2 page (a set of slots)
* Consume *1* page (1 page remain)
* After that, half of pages are left
* We can use this half of pages for incremental marking

RiINcGC:
Dlagram

garbage_collect()
a

if (no
pages)

.

State: marking

\

State: sweeping

y

marks_

start()

v
SWEEE start“

]

.l......
"y

a,y

doing: true

mgmu

‘o‘,’-
:0 .::'
:' . if (incremental_marking)
L marks_continue() marks_step()
. :. -" if (sweep_pages R '
oo, o doing: true
FE ., sweep_continue() "y
“‘ .‘0.'l..l-... ..--I“"““ \ 4 \ 4
., marks_finish() weep_finish
”0., "~.4f.(root scan detect unmarked objects) _...--‘I K
e, T NN iMssssssssssssssssssEEEEEd o State: none

K.Sasada: Ex¥T M Ruby D AE!EIE, 2014

Direct transition
—

Via mutator
(clear doing flag)

Summary

* Ruby’s new two GC implementation
* RGenGC: Restricted Generational GC
* RincGC: Restricted incremental GC

Thank you for your attention
Q&A?

Koichi Sasada

<kol@heroku.com>

Hlheroku

K.Sasada: Ex¥T M Ruby D AE!EIE, 2014

